/* * Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/runtime/common.h" #include namespace tensorrt_llm::kernels { static constexpr runtime::SizeType32 TOP_K_MAX = 1024; template struct TopKSamplingKernelParams { //! Input buffer [batchSize, maxTokensPerStep, vocabSizePadded]. //! Log probabilities of each token in the vocab. If logitsHasProbs is true, //! logProbs must contain **just** probabilities instead of log probabilities. T const* logProbs{nullptr}; //! input buffer [batchSize][tokensPerStep, vocabSizePadded] array of pointers to logits. //! If nullptr, logProbs is used. T const* const* logProbsPtrs{nullptr}; //! output buffer [maxBatchSize][maxSeqLen], optional. Contains pointers to rows //! with output tokens per request. If nullptr, outputIds must be provided. runtime::TokenIdType** outputIdsPtrs{nullptr}; //! output buffer [maxBatchSize, maxSeqLen], optional. Tensor to store output tokens. //! Not used if outputIdsPtrs != nullptr runtime::TokenIdType* outputIds{nullptr}; //! Required. Pointer to the workspace of size returned by getTopKWorkspaceSize. //! Has to be pre-allocated by caller. //! Function does not take ownership of the buffer void* workspace{nullptr}; //! input buffer [maxBatchSize], optional. EOS token ids per request runtime::TokenIdType const* endIds{nullptr}; //! input/output buffer [maxBatchSize], optional. If nullptr, seqLen is 0 //! Current sequence length of the request. Set up to, but excluding endId token. runtime::SizeType32* sequenceLengths{nullptr}; //! input buffer[batchSize], optional. Indices of rows of data in memory pool. //! Linear indexing (batchIdx) is used if nullptr. runtime::SizeType32 const* batchSlots{nullptr}; //! input buffer [maxBatchSize], optional. Number of tokens per step for each request. //! It is assumed that all requests have maxTokensPerStep tokens per step if nullptr. runtime::SizeType32 const* tokensPerStep{nullptr}; //! input buffer [maxBatchSize], optional. If true, request exits early. FinishedState const* finishedInput{nullptr}; //! output buffer [maxBatchSize], optional. //! Set to true if sequence has finished (if finished || outputId == endId). FinishedState* finishedOutput{nullptr}; //! input buffer [maxBatchSize]. Flags whether to skip decoding per request bool const* skipDecode{nullptr}; //! input/output buffer [maxBatchSize], optional. //! Cumulative log probability of selected tokens. Ignored if nullptr float* cumLogProbs{nullptr}; //! output buffer //! [maxBatchSize, maxTopK] when returnAllSelectedTokens, otherwise [maxSeqLen, maxBatchSize] //! Log probs is the probability induced by the top-k sampling. //! If normalizeLogProbs is true, we normalize the probability 'expLogit' of the selected token //! by the probability 's_sum' of a set of top-k tokens, meaning the logProb is the probability //! of the selected token, conditioned on the event that it is selected, //! i.e., log_prob = log P(i | i is in top-k) = log(expLogit / s_sum). //! Ignored if nullptr. float* outputLogProbs{nullptr}; //! input buffer [maxBatchSize], optional. Initialized curand states. //! If nullptr, 1 is always used. curandState_t* curandState{nullptr}; //! input buffer [maxBatchSize]. K for topK sampling per request. //! Supported K is in range [1; 1024]. Where K=1 is greedy search. //! If nullptr maxTopK is used for all requests. runtime::SizeType32 const* topKs{nullptr}; //! input buffer [maxBatchSize]. Probability for topP sampling per request. //! Supported P is in range (0.0, 1.0]. If nullptr, topP is used for all requests float const* topPs{nullptr}; //! maximum among all topKs K for topK sampling runtime::SizeType32 maxTopK{TOP_K_MAX}; //! probability for topP sampling. float maxTopP{1.0f}; runtime::SizeType32 batchSize{-1}; runtime::SizeType32 maxBatchSize{-1}; runtime::SizeType32 vocabSizePadded{-1}; runtime::SizeType32 maxTokensPerStep{-1}; runtime::SizeType32 maxSeqLen{-1}; //! when set to True outputLogProbs are normalized to TopK bool normalizeLogProbs{false}; //! flag to highlight that logProbs contains probabilities bool logitsHasProbs{false}; //! flag to return all selected TopK results bool returnAllSelectedTokens{false}; //! flag to set strict TopP boundary. //! If true, when randNum <=0.0f, the selection is completed, even if K draft tokens are not reached. //! If false, when randNum <=0.0f, the selection will continue until it reaches K tokens. bool strictTopPBoundary{true}; //! flag to return all selected TopK results per request. bool const* returnAllSelectedTokensPerSlot{nullptr}; //! output buffer [maxBatchSize], optional. //! Store the multinomial sampled target token id in TopK/TopP sampled tokens when returnAllSelectedTokens==True. //! Only return when skipOutputIdCurrentStep != nullptr && skipOutputIdCurrentStep == False runtime::TokenIdType* outputIdCurrentStep{nullptr}; //! input buffer [maxBatchSize]. Determine if multinomial sampling is required when returnAllSelectedTokens==True. bool const* skipOutputIdCurrentStep{nullptr}; void checkParams() const { TLLM_CHECK(batchSize > 0); TLLM_CHECK(maxBatchSize > 0); TLLM_CHECK(maxBatchSize >= batchSize); TLLM_CHECK(vocabSizePadded > 0); TLLM_CHECK(maxTokensPerStep > 0); TLLM_CHECK(logProbs || logProbsPtrs); TLLM_CHECK(outputIds || outputIdsPtrs); if (maxTokensPerStep > 1) { TLLM_CHECK(tokensPerStep); } if (outputIds) { TLLM_CHECK(maxSeqLen > 0); } TLLM_CHECK(workspace); TLLM_CHECK(maxTokensPerStep != 1 || returnAllSelectedTokens || sequenceLengths); TLLM_CHECK(maxTokensPerStep != 1 || returnAllSelectedTokens || endIds); if (cumLogProbs != nullptr || outputLogProbs != nullptr) { TLLM_CHECK(maxTokensPerStep == 1); if (cumLogProbs != nullptr) { TLLM_CHECK(!returnAllSelectedTokens); } } TLLM_CHECK(((finishedOutput == nullptr) ^ (endIds == nullptr)) == 0); TLLM_CHECK(0 < maxTopP && maxTopP <= 1.f); TLLM_CHECK(0 <= maxTopK && maxTopK <= TOP_K_MAX); TLLM_CHECK((skipOutputIdCurrentStep && outputIdCurrentStep && returnAllSelectedTokens) || (skipOutputIdCurrentStep == nullptr && outputIdCurrentStep == nullptr)); } }; // clang-format off //! \brief Given logProbs, performs top K **and** top P sampling at the same time. Fills sampled tokens to outputIds. //! Computes sequenceLength, finished state, cumLogProbs inplace. //! Sampling per request can be controlled using skipDecode, topPs and topKs parameters. //! Function sets workspaceSize and exits early if workspace is nullptr. //! If logits are Nan, we set output token to be the last in the vocabulary. // clang-format on template void invokeBatchTopKSampling(TopKSamplingKernelParams const& params, cudaStream_t stream); template [[nodiscard]] std::vector getTopKWorkspaceSizes(runtime::SizeType32 batchSize, runtime::SizeType32 maxTokensPerStep, runtime::SizeType32 maxTopK, runtime::SizeType32 vocabSizePadded) { runtime::SizeType32 constexpr maxBlockPerBeam = 8; auto const tempLogProbsBufSize = sizeof(T) * batchSize * maxTokensPerStep * vocabSizePadded; // type T auto const topKTmpIdsBufSize = sizeof(runtime::SizeType32) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type int auto const topKTmpValBufSize = sizeof(T) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type T return {tempLogProbsBufSize, topKTmpIdsBufSize, topKTmpValBufSize}; } [[nodiscard]] inline std::vector getTopKInitWorkspaceSizes(runtime::SizeType32 batchSize) { auto const tempTopKsBufSize = batchSize * sizeof(runtime::SizeType32); auto const tempTopPsBufSize = batchSize * sizeof(float); return {tempTopKsBufSize, tempTopPsBufSize}; } //! \brief Returns workspace size in bytes needed for sampling TopK computation //! \param batchSize batch size //! \param maxTokensPerStep maximum number of tokens per computed per step //! \param maxTopK maximum among all topKs K for topK sampling //! \param vocabSizePadded size of padded vocab template [[nodiscard]] size_t getTopKWorkspaceSize(runtime::SizeType32 batchSize, runtime::SizeType32 maxTokensPerStep, runtime::SizeType32 maxTopK, runtime::SizeType32 vocabSizePadded) { auto const workspaceSizes = getTopKWorkspaceSizes(batchSize, maxTokensPerStep, maxTopK, vocabSizePadded); auto const initWorkspaceSizes = getTopKInitWorkspaceSizes(batchSize); return std::max(tensorrt_llm::common::calcAlignedSize(workspaceSizes, 256), tensorrt_llm::common::calcAlignedSize(initWorkspaceSizes, 256)); } void invokeSetupTopKRuntimeArgs(runtime::SizeType32 batchSize, ScatterDecodingParamEntry topK, ScatterDecodingParamEntry topP, bool* skipDecodePtr, runtime::SizeType32 const* batchSlotsPtr, bool onDevice, cudaStream_t stream = nullptr); void invokeSetupTopKTopPRuntimeArgs(runtime::SizeType32 batchSize, ScatterDecodingParamEntry topK, ScatterDecodingParamEntry topP, bool* skipDecodeTopKPtr, bool* skipDecodeTopPPtr, runtime::SizeType32 const* batchSlotsPtr, bool onDevice, cudaStream_t stream = nullptr); inline bool clampTopP(float& topP) { if (topP < 0.f || topP > 1.0f) { TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP); topP = std::clamp(topP, 0.f, 1.f); return true; } return false; } inline bool clampTopK(runtime::SizeType32& topK) { if (topK < 0 || topK > TOP_K_MAX) { TLLM_LOG_WARNING( "TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX); topK = std::clamp(topK, 0, TOP_K_MAX); return true; } return false; } inline bool regularizeTopKTopP(runtime::SizeType32& topK, float& topP) { bool modified = false; if (topK == 0 && topP == 0.0f) { // TensorRT-LLM's topp implementation does not support topp = 0.0f, but it // equivalent to greedy search. So, we set the topk = 1 as an alternative // solution. topK = 1; modified = true; } if (topK > 0 && topP == 0.0f) { // This case corresponds to the old topk sampling, which is equivalent to // the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and // TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we // replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the // compatibility. topP = 1.0f; modified = true; } return modified; } __device__ __host__ inline void setupTopKTopPRuntimeArgOne(runtime::SizeType32 batchIndex, ScatterDecodingParamEntry topK, ScatterDecodingParamEntry topP, runtime::SizeType32 const* batchSlots, bool* skipDecodeTopK, bool* skipDecodeTopP, float* initialTopPBuf) { auto const batchSlot = batchSlots[batchIndex]; auto const k = topK.mVector == nullptr ? topK.mScalar : topK.mVector[batchIndex]; auto const p = topP.mVector == nullptr ? topP.mScalar : topP.mVector[batchIndex]; if (topK.mTarget != nullptr) { topK.mTarget[batchSlot] = k; } if (topP.mTarget != nullptr) { topP.mTarget[batchSlot] = p; } if (skipDecodeTopK != nullptr) { skipDecodeTopK[batchSlot] = k == 0; } if (skipDecodeTopP != nullptr) { skipDecodeTopP[batchSlot] = k != 0; } if (initialTopPBuf != nullptr) { initialTopPBuf[batchSlot] = p; } } } // namespace tensorrt_llm::kernels