/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/decoderXQAImplJIT.h" #include "compileEngine.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/config.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/utils.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/cubin/xqa_kernel_cubin.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAConstants.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/kernelUtils.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQARunner.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.h" #include "tensorrt_llm/kernels/unfusedAttentionKernels.h" #include "tensorrt_llm/kernels/xqaDispatcher.h" namespace { using ::tensorrt_llm::kernels::XQAKernelRuntimeHashKey; using ::tensorrt_llm::kernels::XQAParams; using ::tensorrt_llm::kernels::XQAKernelMetaInfo; XQAKernelRuntimeHashKey getRuntimeHashKeyFromKernelMeta(XQAKernelMetaInfo const& kernelMeta) { return {kernelMeta.mKVDataType, kernelMeta.mHeadDim, kernelMeta.mBeamWidth, kernelMeta.mNumQHeadsOverKV, kernelMeta.mMTileSize, kernelMeta.mTokensPerPage, kernelMeta.mPagedKVCache, kernelMeta.mMultiQueryTokens, false, std::nullopt}; } } // anonymous namespace TRTLLM_NAMESPACE_BEGIN namespace kernels { DecoderXQAImplJIT::DecoderXQAImplJIT(DecoderXQARunner* runner) : DecoderXQAImpl(runner) , mDriver(tensorrt_llm::common::CUDADriverWrapper::getInstance()) , mResource(DecoderXQARunner::getResourceGlobal()) , mForceXQA(tensorrt_llm::common::forceXQAKernels()) , mSM(tensorrt_llm::common::getSMVersion()) { } bool DecoderXQAImplJIT::needHMMASpecDec(XQAParams const& xqaParams, bool forConfigurePlugin) const { return xqaParams.multi_query_tokens && !jit::supportConfigQGMMA(xqaParams, mSM, forConfigurePlugin) && jit::supportConfigHMMA(xqaParams, mSM, forConfigurePlugin) && !jit::supportConfigMLA(xqaParams, mSM, forConfigurePlugin); } bool DecoderXQAImplJIT::supportConfig(XQAParams const& xqaParams, bool forConfigurePlugin) const { return jit::supportConfigQGMMA(xqaParams, mSM, forConfigurePlugin) || jit::supportConfigHMMA(xqaParams, mSM, forConfigurePlugin) || jit::supportConfigMLA(xqaParams, mSM, forConfigurePlugin); } bool DecoderXQAImplJIT::mayHavePerfGain(XQAParams const& xqaParams) const { // NOTE: only XQA supports multi_query_tokens (Medusa mode). if (mForceXQA || xqaParams.multi_query_tokens) { return true; } // Always prefer XQA-based MLA over FMHA-base MLA for now. if (xqaParams.isMLA()) { return true; } int num_kv_heads = xqaParams.num_kv_heads; int batch_size = static_cast(xqaParams.batch_size); int multi_block_count = 1; if (xqaParams.multi_block_mode) { int history_length = xqaParams.max_past_kv_length; // Always use at least 1 block regardless of history length multi_block_count = std::max(1, history_length / kMinHistoryTokensPerBlock); } int block_count = num_kv_heads * batch_size * multi_block_count; return static_cast(block_count) * kEnableMinBlockFactor >= static_cast(mRunner->mMultiProcessorCount); } bool DecoderXQAImplJIT::shouldUse(XQAParams const& umbrellaXQAParams, bool forConfigurePlugin) { if (forConfigurePlugin) { for (int beam_width = 1; beam_width <= umbrellaXQAParams.beam_width; ++beam_width) { XQAParams actualXQAParams = umbrellaXQAParams; actualXQAParams.beam_width = beam_width; if (supportConfig(actualXQAParams, forConfigurePlugin)) { return true; } } TLLM_LOG_DEBUG("JIT XQA is not used: no supported configuration found for any beam_width"); return false; } else { auto const& xqaParams = umbrellaXQAParams; bool isConfigSupported = supportConfig(xqaParams, forConfigurePlugin); if (!isConfigSupported) { TLLM_LOG_DEBUG("JIT XQA is not used: unsupported configuration"); return false; } bool hasPerfGain = mayHavePerfGain(xqaParams); if (!hasPerfGain) { if (!xqaParams.is_fp8_output && xqaParams.kv_cache_data_type == DATA_TYPE_E4M3 && (xqaParams.data_type == DATA_TYPE_BF16 || xqaParams.data_type == DATA_TYPE_FP16)) { TLLM_LOG_DEBUG( "JIT XQA is selected in the generation phase for fp16/bf16 input and e4m3 kv cache because MMHA " "does not support this combination."); return true; } TLLM_LOG_DEBUG("JIT XQA is not used: maybe no performance gain"); return false; } return true; } } jit::CubinObjKey DecoderXQAImplJIT::getCubinObjKeyFromXQAParams(XQAParams const& xqaParams) const { XQAKernelLoadHashKey loadKey; loadKey.data_type = xqaParams.data_type; loadKey.sm = mSM; XQAKernelRuntimeHashKey runtimeKey = getRuntimeHashKeyFromXQAParams(xqaParams, true, mSM); return {loadKey, runtimeKey}; } void DecoderXQAImplJIT::prepareForActualXQAParams(XQAParams const& xqaParams) { jit::CubinObjKey currentKey = getCubinObjKeyFromXQAParams(xqaParams); jit::CompileEngine compileEngine(mSM, xqaParams); auto registryGlobal = mResource->getCubinObjRegistry(); if (supportConfig(xqaParams, true)) { jit::CubinObjKey key = getCubinObjKeyFromXQAParams(xqaParams); registryGlobal->insertCubinIfNotExists(key, &compileEngine, /*initialize=*/true); } } void DecoderXQAImplJIT::prepare(XQAParams const& umbrellaXQAParams) { for (int beam_width = 1; beam_width <= umbrellaXQAParams.beam_width; ++beam_width) { XQAParams actualXQAParams = umbrellaXQAParams; actualXQAParams.beam_width = beam_width; prepareForActualXQAParams(actualXQAParams); if (needHMMASpecDec(umbrellaXQAParams, true)) { actualXQAParams.generation_input_length = 16; // a WAR to generate tileSize=32 JIT cubin prepareForActualXQAParams(actualXQAParams); } } } void DecoderXQAImplJIT::runWithKVLinearBuffer( XQAParams const& xqaParams, KVLinearBuffer const& kv_linear_buffer, cudaStream_t const& stream) { runDispatchKVCacheBuffer(xqaParams, kv_linear_buffer, stream); } void DecoderXQAImplJIT::runWithKVBlockArray( XQAParams const& xqaParams, KVBlockArray const& kv_block_array, cudaStream_t const& stream) { runDispatchKVCacheBuffer(xqaParams, kv_block_array, stream); } #define XQA_KERNEL_RUN(DATA_TYPE) \ runImpl(xqa_params, kv_cache_buffer, mRunner->mMultiProcessorCount, stream) template void DecoderXQAImplJIT::runDispatchKVCacheBuffer( XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream) { if (mRunner->mDataType == DATA_TYPE_FP16) { XQA_KERNEL_RUN(__half); } else { XQA_KERNEL_RUN(__nv_bfloat16); } } #undef XQA_KERNEL_RUN namespace { struct SpecDecParams { uint32_t qSeqLen; uint32_t const* qCuSeqLens; // [nbReq + 1] using MaskType = uint32_t; MaskType const* mask; // [nbReq][qSeqLen][divUp(qSeqLen, 32)] or [qCuSeqLen[nbReq]][divUp(qSeqLen, 32)] }; } // namespace template void DecoderXQAImplJIT::runImpl(XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer, int multiprocessor_count, cudaStream_t const& stream) const { jit::CubinObjKey const key = getCubinObjKeyFromXQAParams(xqaParams); jit::CubinObj const* const cubinObj = mResource->getCubinObjRegistry()->getCubin(key); TLLM_CHECK(cubinObj != nullptr && cubinObj->isInitialized()); bool const isSpecDec = xqaParams.multi_query_tokens; bool const isSkipSoftmax = xqaParams.skip_softmax_threshold_scale_factor != 0; bool const isHMMAKernel = (cubinObj->getKernelType() == XQAKernelType::kAMPERE_WARP_SPECIALIZED); bool const isGMMAKernel = (cubinObj->getKernelType() == XQAKernelType::kHOPPER_WARP_SPECIALIZED); bool const isMLAKernel = (cubinObj->getKernelType() == XQAKernelType::kSM120_MLA); TLLM_CHECK_WITH_INFO(!isSpecDec || isGMMAKernel || isHMMAKernel || (isMLAKernel && !xqaParams.spec_decoding_is_generation_length_variable), "speculative decoding is available for GMMA/MLA kernel only in JIT path for now. For MLA, the input sequence " "length must be uniform and draft tokens must be linear."); TLLM_CHECK_DEBUG(isGMMAKernel == jit::supportConfigQGMMA(xqaParams, mSM, false)); // @fixme: also embed these compile-time flags in cubin directly // Whether RoPE is fused into the XQA kernel. // * If applyRoPEInXqaKernel is true, XQA kernel applies RoPE AND performs SDPA. // * If applyRoPEInXqaKernel is false, a separate kernel applies RoPE (see invokeQKVPreprocessing), then XQA kernel // performs SDPA. // In this case, xqa_q_input_ptr (see below) serves as the scratch space to store intermediate RoPE output. bool const applyRoPEInXqaKernel = isGMMAKernel && !isSpecDec && tensorrt_llm::common::contains({PositionEmbeddingType::kLONG_ROPE, PositionEmbeddingType::kROPE_GPT_NEOX, PositionEmbeddingType::kROPE_GPTJ}, xqaParams.position_embedding_type) && !xqaParams.isMLA(); unsigned int head_size = xqaParams.head_size; int num_q_heads = xqaParams.num_q_heads; int num_kv_heads = xqaParams.num_kv_heads; TLLM_CHECK_WITH_INFO(num_q_heads % num_kv_heads == 0, "numQHeads should be multiple of numKVHeads."); unsigned int num_q_heads_over_kv = num_q_heads / num_kv_heads; unsigned int beam_width = xqaParams.beam_width; unsigned int batch_beam_size = xqaParams.batch_size * beam_width; const KvCacheDataType cache_type = xqaParams.kv_cache_quant_mode.hasInt8KvCache() ? KvCacheDataType::INT8 : (xqaParams.kv_cache_quant_mode.hasFp8KvCache() ? KvCacheDataType::FP8 : KvCacheDataType::BASE); XQALaunchParam launchParams; bool const isFp8Out = xqaParams.is_fp8_output; bool const needOutputCvt = false; void* inputScratch = nullptr; buildXQALaunchParams(launchParams, inputScratch, needOutputCvt, xqaParams, kv_cache_buffer); if (needOutputCvt) { launchParams.output = inputScratch; } // NOTE: MHA kernels should read kv cache that has already been appended with new tokens' kv cache. void* xqa_q_input_ptr = (applyRoPEInXqaKernel ? nullptr : inputScratch); if (!applyRoPEInXqaKernel) { if (!xqaParams.isMLA()) { // Build cu_seqlens, padding_offset, and rotary inv freq tensors BuildDecoderInfoParams decoder_params{}; decoder_params.seqQOffsets = launchParams.cu_seq_lens; decoder_params.seqQLengths = xqaParams.spec_decoding_generation_lengths; decoder_params.seqKVLengths = xqaParams.sequence_lengths; decoder_params.tokensInfo = launchParams.tokens_info; decoder_params.batchSize = int(batch_beam_size); decoder_params.maxQSeqLength = xqaParams.generation_input_length; decoder_params.numTokens = xqaParams.total_num_input_tokens; decoder_params.removePadding = true; TLLM_CHECK_WITH_INFO(!xqaParams.multi_query_tokens || xqaParams.spec_decoding_generation_lengths != nullptr, "Spec_decoding_generation_lengths must be provided."); // Rotary embedding inv_freq buffer. decoder_params.rotaryEmbeddingScale = xqaParams.rotary_embedding_scale; decoder_params.rotaryEmbeddingBase = xqaParams.rotary_embedding_base; decoder_params.rotaryEmbeddingDim = xqaParams.rotary_embedding_dim; decoder_params.rotaryScalingType = xqaParams.rotary_embedding_scale_type; decoder_params.rotaryEmbeddingInvFreq = launchParams.rotary_inv_freq_buf; decoder_params.rotaryEmbeddingInvFreqCache = xqaParams.rotary_embedding_inv_freq_cache; decoder_params.rotaryEmbeddingMaxPositions = xqaParams.rotary_embedding_max_positions; // The rotary_embedding_inv_freq_cache for QKVPreprocessing. // Use the xqaParams.rotary_embedding_inv_freq_cache input when the buildDecoderInfoKernel is skipped. float const* rotary_inv_freq_buf = xqaParams.rotary_embedding_inv_freq_cache; if (decoder_params.isBuildDecoderInfoKernelNeeded() || xqaParams.multi_query_tokens) { rotary_inv_freq_buf = launchParams.rotary_inv_freq_buf; invokeBuildDecoderInfo(decoder_params, stream); } sync_check_cuda_error(stream); // The preprocessing kernel that applies RoPE and updates kv cache. QKVPreprocessingParams preprocessingParams; memset(&preprocessingParams, 0, sizeof(preprocessingParams)); // Set parameters. preprocessingParams.qkv_input = static_cast(const_cast(xqaParams.qkv)); preprocessingParams.q_output = static_cast(xqa_q_input_ptr); preprocessingParams.kv_cache_buffer = kv_cache_buffer; preprocessingParams.kv_cache_block_scales_buffer = {}; preprocessingParams.qkv_bias = static_cast(xqaParams.qkv_bias); // Buffers. preprocessingParams.logn_scaling = xqaParams.logn_scaling_ptr; preprocessingParams.tokens_info = launchParams.tokens_info; preprocessingParams.seq_lens = xqaParams.spec_decoding_generation_lengths; preprocessingParams.cache_seq_lens = xqaParams.sequence_lengths; preprocessingParams.cu_seq_lens = xqaParams.multi_query_tokens ? launchParams.cu_seq_lens : nullptr; preprocessingParams.rotary_embedding_inv_freq = rotary_inv_freq_buf; preprocessingParams.rotary_coef_cache_buffer = xqaParams.rotary_cos_sin; preprocessingParams.qkv_scale_orig_quant = xqaParams.kv_scale_orig_quant; preprocessingParams.spec_decoding_position_offsets = xqaParams.spec_decoding_position_offsets; preprocessingParams.mrope_position_deltas = xqaParams.mrope_position_deltas; // Scalar parameters. preprocessingParams.batch_size = int(batch_beam_size); preprocessingParams.max_input_seq_len = xqaParams.generation_input_length; preprocessingParams.max_kv_seq_len = xqaParams.max_past_kv_length; preprocessingParams.cyclic_kv_cache_len = xqaParams.cyclic_attention_window_size; preprocessingParams.sink_token_len = xqaParams.sink_token_length; preprocessingParams.token_num = xqaParams.total_num_input_tokens; preprocessingParams.remove_padding = true; preprocessingParams.cross_attention = false; preprocessingParams.head_num = xqaParams.num_q_heads; preprocessingParams.kv_head_num = xqaParams.num_kv_heads; preprocessingParams.qheads_per_kv_head = xqaParams.num_q_heads / xqaParams.num_kv_heads; preprocessingParams.size_per_head = xqaParams.head_size; preprocessingParams.rotary_embedding_dim = xqaParams.rotary_embedding_dim; preprocessingParams.rotary_embedding_base = xqaParams.rotary_embedding_base; preprocessingParams.rotary_scale_type = xqaParams.rotary_embedding_scale_type; preprocessingParams.rotary_embedding_scale = xqaParams.rotary_embedding_scale; preprocessingParams.rotary_embedding_max_positions = xqaParams.rotary_embedding_max_positions; preprocessingParams.position_embedding_type = xqaParams.position_embedding_type; preprocessingParams.position_shift_enabled = xqaParams.position_shift_enabled; preprocessingParams.cache_type = cache_type; preprocessingParams.separate_q_kv_output = true; preprocessingParams.quantized_fp8_output = false; preprocessingParams.generation_phase = true; preprocessingParams.multi_processor_count = multiprocessor_count; preprocessingParams.rotary_vision_start = xqaParams.rotary_vision_start; preprocessingParams.rotary_vision_length = xqaParams.rotary_vision_length; invokeQKVPreprocessing(preprocessingParams, stream); sync_check_cuda_error(stream); } else { xqa_q_input_ptr = xqaParams.quant_q_buffer_ptr; } } auto const makeSpecDecParams = [&]() -> SpecDecParams { auto const qSeqLen = static_cast(xqaParams.generation_input_length); uint32_t maxQSeqLen = xqaParams.spec_decoding_is_generation_length_variable ? xqaParams.spec_decoding_max_generation_length : qSeqLen; return {.qSeqLen = maxQSeqLen, .qCuSeqLens = reinterpret_cast(launchParams.cu_seq_lens), .mask = reinterpret_cast(xqaParams.spec_decoding_packed_mask)}; }; constexpr uint32_t kMAX_NB_KERNEL_PARAMS = 19; uint32_t idxNextParam = 0; void* kernelParams[kMAX_NB_KERNEL_PARAMS]; auto appendParam = [&](auto* p) mutable { TLLM_CHECK(idxNextParam < kMAX_NB_KERNEL_PARAMS); kernelParams[idxNextParam++] = const_cast(static_cast(p)); }; void const* const kernel_input_tokens = (applyRoPEInXqaKernel ? launchParams.qkv : xqa_q_input_ptr); if (isMLAKernel) { CUtensorMap const tensorMapQ = makeTensorMapForXqaMlaQ(mDriver, xqaParams, kernel_input_tokens); appendParam(&tensorMapQ); CUtensorMap const tensorMapK = makeTensorMapForXqaMlaKVCache(mDriver, xqaParams, kv_cache_buffer, true); appendParam(&tensorMapK); CUtensorMap const tensorMapV = makeTensorMapForXqaMlaKVCache(mDriver, xqaParams, kv_cache_buffer, false); appendParam(&tensorMapV); appendParam(&launchParams.qScale); appendParam(&launchParams.output); appendParam(&launchParams.kvCacheParams); appendParam(&launchParams.batch_size); appendParam(&launchParams.kv_scale_quant_orig); appendParam(&launchParams.scratch); appendParam(&launchParams.semaphores); uint32_t const multi_block = computeMultiBlockCountForMLA(xqaParams, multiprocessor_count); std::byte* const partialResults = static_cast(launchParams.scratch) + xqaMlaCgaXBufSize * multi_block * xqaParams.total_num_input_tokens; appendParam(&partialResults); kernelParams[idxNextParam] = nullptr; // one extra nullptr at end as guard. uint32_t const inputSeqLen = (xqaParams.multi_query_tokens || xqaParams.isMLA()) ? static_cast(xqaParams.generation_input_length) : 1U; dim3 const dimGrid{4 * inputSeqLen, multi_block, xqaParams.batch_size}; dim3 const blockDim(128 * 3, 1, 1); cubinObj->launch(dimGrid, blockDim, stream, kernelParams); } else if (isSpecDec && isHMMAKernel) { // MultiQueryTokens (generation_input_length > 1) need extra parameters (like qSeqLen, headGrpSize, and // mask). Input parameters for MultiQueryTokens kernels. unsigned int headGrpSize = num_q_heads_over_kv; // Use mTileSize = 16 kernels when qSeqLen <= 16. unsigned int qSeqLen = static_cast(xqaParams.generation_input_length); unsigned int mTileSize = qSeqLen <= 16 ? 16 : 32; unsigned int nbTokenBlocksPerGrp = divUp(qSeqLen * headGrpSize, mTileSize); unsigned int maxQSeqLen = xqaParams.spec_decoding_is_generation_length_variable ? // true for ReDrafter xqaParams.spec_decoding_max_generation_length : qSeqLen; appendParam(&maxQSeqLen); appendParam(&launchParams.num_k_heads); appendParam(&headGrpSize); appendParam(&launchParams.cu_seq_lens); bool const allowSlidingWindow = !(isSpecDec && xqaParams.is_spec_dec_tree); // sliding windows does not support spec dec with tree-based // token, only chained tokens if (allowSlidingWindow) { appendParam(&launchParams.slidingWindowSize); } appendParam(&launchParams.qScale); appendParam(&launchParams.output); if (isFp8Out && !needOutputCvt) { appendParam(&launchParams.rcpOutScale); } appendParam(&kernel_input_tokens); appendParam(&xqaParams.spec_decoding_packed_mask); appendParam(&xqaParams.attention_sinks); appendParam(&launchParams.kvCacheParams); if (xqaParams.beam_width > 1) { appendParam(&launchParams.beamSearchParams.value()); } appendParam(&launchParams.batch_size); appendParam(&launchParams.kv_scale_quant_orig); appendParam(&launchParams.semaphores); appendParam(&launchParams.scratch); uint32_t multi_block = 1; // if (xqaParams.multi_block_mode) // { // multi_block = computeMultiBlockCount(xqaParams, xqaParams.batch_size, multiprocessor_count); // } auto const gridDim = (dim3{multi_block, xqaParams.num_kv_heads * nbTokenBlocksPerGrp, xqaParams.batch_size}); dim3 const blockDim(128, 1, 2); cubinObj->launch(gridDim, blockDim, stream, kernelParams); } else { appendParam(&launchParams.num_k_heads); bool const allowSlidingWindow = !(isSpecDec && xqaParams.is_spec_dec_tree); // sliding windows does not support spec dec with tree-based // token, only chained tokens if (allowSlidingWindow) { appendParam(&launchParams.slidingWindowSize); } appendParam(&launchParams.qScale); appendParam(&launchParams.output); if (isFp8Out && !needOutputCvt) { appendParam(&launchParams.rcpOutScale); } appendParam(&kernel_input_tokens); if (applyRoPEInXqaKernel) { appendParam(&launchParams.ropeCosSin); } appendParam(&xqaParams.attention_sinks); appendParam(&launchParams.kvCacheParams); if (xqaParams.beam_width > 1) { appendParam(&launchParams.beamSearchParams.value()); } appendParam(&launchParams.batch_size); appendParam(&launchParams.kv_scale_quant_orig); CUtensorMap tensorMap{}; if (isGMMAKernel) { tensorMap = makeTensorMapForHopperXqaKVCache(mDriver, xqaParams, kv_cache_buffer); appendParam(&tensorMap); } uint32_t specDecBlocks = 1; SpecDecParams specDecParams{}; if (isSpecDec) { TLLM_CHECK_WITH_INFO( isGMMAKernel, "speculative decoding is available for GMMA kernel only in JIT path for now."); TLLM_CHECK_DEBUG_WITH_INFO(xqaParams.max_past_kv_length + 1 <= xqaParams.cyclic_attention_window_size, "SWA and speculative decoding cannot be used at the same time for now."); specDecParams = makeSpecDecParams(); appendParam(&specDecParams); specDecBlocks = divUp(specDecParams.qSeqLen, 64 / num_q_heads_over_kv); } if (isSkipSoftmax) { TLLM_CHECK_WITH_INFO(isGMMAKernel, "skip softmax is only supported for GMMA kernel for now."); TLLM_CHECK_WITH_INFO(!isSpecDec, "skip softmax is not supported with spec dec for now."); appendParam(&xqaParams.skip_softmax_threshold_scale_factor); #ifdef SKIP_SOFTMAX_STAT appendParam(&xqaParams.skip_softmax_total_blocks); appendParam(&xqaParams.skip_softmax_skipped_blocks); #endif } appendParam(&launchParams.semaphores); appendParam(&launchParams.scratch); kernelParams[idxNextParam] = nullptr; // one extra nullptr at end as guard. uint32_t multi_block = 1; if (xqaParams.multi_block_mode) { if (isSpecDec && isGMMAKernel) { multi_block = computeMultiBlockCountSpecDecGMMA( xqaParams, xqaParams.batch_size, multiprocessor_count, specDecBlocks); } else if (!isSpecDec) { multi_block = computeMultiBlockCount(xqaParams, xqaParams.batch_size, multiprocessor_count); } } uint32_t const nbKVHeads = xqaParams.num_kv_heads; auto const gridDim = (isGMMAKernel ? dim3{specDecBlocks, multi_block, nbKVHeads * xqaParams.batch_size} : dim3{multi_block, nbKVHeads, xqaParams.batch_size}); dim3 const blockDim(128, 1, isGMMAKernel ? 3 : 2); cubinObj->launch(gridDim, blockDim, stream, kernelParams); } sync_check_cuda_error(stream); if (needOutputCvt) { tensorrt_llm::kernels::invokeConversion<__nv_fp8_e4m3, T>(static_cast<__nv_fp8_e4m3*>(xqaParams.output), static_cast(launchParams.output), xqaParams.head_size * xqaParams.num_q_heads * xqaParams.total_num_input_tokens, xqaParams.fp8_out_scale, stream); sync_check_cuda_error(stream); } } } // namespace kernels TRTLLM_NAMESPACE_END