# Mamba This document shows how to build and run a [Mamba](https://github.com/state-spaces/mamba) model in TensorRT-LLM on a single GPU. - [Mamba](#mamba) - [Overview](#overview) - [Support Matrix](#support-matrix) - [Usage](#usage) - [1. Download weights from HuggingFace Transformers](#1-download-weights-from-huggingface-transformers) - [2. Convert weights from HF Transformers to TensorRT-LLM format](#2-convert-dweights-from-hf-transformers-to-tensorrt-llm-format) - [3. Build TensorRT engine(s)](#3-build-tensorrt-engines) - [4. Run summarization task with the TensorRT engine(s)](#4-run-summarization-task-with-the-tensorrt-engines) ## Overview The TensorRT-LLM Mamba implementation can be found in [`tensorrt_llm/models/mamba/model.py`](../../tensorrt_llm/models/mamba/model.py). The TensorRT-LLM Mamba example code is located in [`examples/mamba`](./). There is one main file: * [`convert_checkpoint.py`](./convert_checkpoint.py) to convert a checkpoint from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format. In addition, there are two shared files in the parent folder [`examples`](../) for inference and evaluation: * [`../run.py`](../run.py) to run the inference on an input text; * [`../summarize.py`](../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. ## Support Matrix | Model Name | FP16 | BF16 | TP | | :--------------: | :---: | :---: | :-: | | Mamba1 | Y | Y | N | | Mamba2 | Y | Y | Y | * Mamba2: TensorRT-LLM can only support the pure Mamba model for now, will support the hybrid models later. ## Usage The next two sections describe how to convert the weights from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format. ### 1. Download weights from HuggingFace Transformers Please install required packages first and setup `git-lfs`: ```bash pip install -r requirements.txt git lfs install ``` There are different HF checkpoints available. For Mamba1, TensorRT-LLM can support those Transformers compatible models. Here're some examples to fetch the checkpoint. ```bash # mamba-2.8b git clone https://huggingface.co/state-spaces/mamba-2.8b-hf ./mamba_model/mamba-2.8b # mamba-130m git clone https://huggingface.co/state-spaces/mamba-130m-hf ./mamba_model/mamba-130m # mamba2-2.7b git clone https://huggingface.co/state-spaces/mamba2-2.7b ./mamba_model/mamba2-2.7b # mamba2-130m git clone https://huggingface.co/state-spaces/mamba2-130m ./mamba_model/mamba2-130m # mamba-codestral-7B-v0.1 git clone https://huggingface.co/mistralai/mamba-codestral-7B-v0.1 ./mamba_model/mamba-codestral-7B-v0.1 ``` Since mamba models use tokenizer from gpt-neox-20b model, use the following command to fetch the checkpoint of gpt-neox-20b. ```bash # gpt-neox-20b git clone https://huggingface.co/EleutherAI/gpt-neox-20b ./mamba_model/gpt-neox-20b ``` ### 2. Convert weights from HF Transformers to TensorRT-LLM format The [`convert_checkpoint.py`](./convert_checkpoint.py) script converts HF weights to TensorRT-LLM checkpoints. For the Mamba2 models, if they can support tensor parallelism, you can run them with 1, 2, 4 or 8 GPUs. Here we use mamba-codestral-7B-v0.1 as an example. ```bash # mamba-2.8b python convert_checkpoint.py --model_dir ./mamba_model/mamba-2.8b/ \ --dtype bfloat16 \ --output_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/ # mamba-130m python convert_checkpoint.py --model_dir ./mamba_model/mamba-130m/ \ --dtype float16 \ --output_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/ # mamba2-2.7b python convert_checkpoint.py --model_dir ./mamba_model/mamba2-2.7b/ \ --dtype float16 \ --output_dir ./mamba_model/mamba2-2.7b/trt_ckpt/fp16/1-gpu/ # mamba2-130m python convert_checkpoint.py --model_dir ./mamba_model/mamba2-130m/ \ --dtype float16 \ --output_dir ./mamba_model/mamba2-130m/trt_ckpt/fp16/1-gpu/ # mamba-codestral-7B-v0.1 python convert_checkpoint.py --model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --dtype float16 \ --output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/1-gpu/ # mamba-codestral-7B-v0.1 with 2-way tensor parallelism. python convert_checkpoint.py --model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --dtype float16 \ --world_size 2 \ --output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/2-gpu/ ``` ### 3. Build TensorRT engine(s) The `trtllm-build` command builds TensorRT-LLM engines from TensorRT-LLM checkpoints. ```bash # mamba-2.8b trtllm-build --checkpoint_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/ # mamba-130m trtllm-build --checkpoint_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/ # mamba2-2.7b trtllm-build --checkpoint_dir ./mamba_model/mamba2-2.7b/trt_ckpt/fp16/1-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba2-2.7b/trt_engines/fp16/1-gpu/ # mamba2-130m trtllm-build --checkpoint_dir ./mamba_model/mamba2-130m/trt_ckpt/fp16/1-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba2-130m/trt_engines/fp16/1-gpu/ # mamba-codestral-7B-v0.1 trtllm-build --checkpoint_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/1-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/1-gpu/ # mamba-codestral-7B-v0.1 with 2-way tensor parallelism. trtllm-build --checkpoint_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/2-gpu/ \ --paged_kv_cache disable \ --gemm_plugin auto \ --max_batch_size 8 \ --max_input_len 924 \ --max_seq_len 1024 \ --output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/2-gpu/ ``` Note that when building Mamba models, you need to disable the `paged_kv_cache` as it is used for transformer-based models. Mamba models use `paged_state` instead and it is enabled by default. If `paged_state` is disabled, engine will be built with the contiguous stage cache. ### 4. Run summarization task with the TensorRT engine(s) The following section describes how to run a TensorRT-LLM Mamba model to summarize the articles from the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. For each summary, the script can compute the [ROUGE](https://en.wikipedia.org/wiki/ROUGE_(metric)) scores and use the `ROUGE-1` score to validate the implementation. ```bash # mamba-2.8b python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba-2.8b/ \ --tokenizer_dir ./mamba_model/gpt-neox-20b/ \ --data_type bf16 \ --engine_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/ # mamba-130m python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba-130m/ \ --tokenizer_dir ./mamba_model/gpt-neox-20b/ \ --data_type fp16 \ --engine_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/ # mamba2-2.7b python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba2-2.7b/ \ --tokenizer_dir ./mamba_model/gpt-neox-20b/ \ --data_type fp16 \ --engine_dir ./mamba_model/mamba2-2.7b/trt_engines/fp16/1-gpu/ # mamba2-130m python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba2-130m/ \ --tokenizer_dir ./mamba_model/gpt-neox-20b/ \ --data_type fp16 \ --engine_dir ./mamba_model/mamba2-130m/trt_engines/fp16/1-gpu/ # mamba-codestral-7B-v0.1 python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --tokenizer_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --data_type fp16 \ --engine_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/1-gpu/ # mamba-codestral-7B-v0.1 with 2-way tensor parallelism. mpirun -n 2 --allow-run-as-root \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --tokenizer_dir ./mamba_model/mamba-codestral-7B-v0.1/ \ --data_type fp16 \ --engine_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/2-gpu/ ```