/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "customAllReduceKernels.h" #include "tensorrt_llm/common/cudaBf16Fallbacks.cuh" #include "tensorrt_llm/common/cudaTypeUtils.cuh" #include "tensorrt_llm/common/dataType.h" #include "tensorrt_llm/common/envUtils.h" #include #include namespace tensorrt_llm::kernels { using tensorrt_llm::common::divUp; using tensorrt_llm::common::roundUp; //////////////////////////////////////////////////////////////////////////////////////////////////// static inline __device__ void st_flag_release(uint32_t const& flag, uint32_t* flag_addr) { #if __CUDA_ARCH__ >= 700 asm volatile("st.global.release.sys.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr)); #else __threadfence_system(); asm volatile("st.global.volatile.b32 [%1], %0;" ::"r"(flag), "l"(flag_addr)); #endif } //////////////////////////////////////////////////////////////////////////////////////////////////// static inline __device__ uint32_t ld_flag_acquire(uint32_t* flag_addr) { uint32_t flag; #if __CUDA_ARCH__ >= 700 asm volatile("ld.global.acquire.sys.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr)); #else asm volatile("ld.global.volatile.b32 %0, [%1];" : "=r"(flag) : "l"(flag_addr)); #endif return flag; } //////////////////////////////////////////////////////////////////////////////////////////////////// // Type Converter that packs data format to 128 bits data type // using PackedFloat = union { int4 packed; float unpacked[4]; }; using PackedHalf = union { int4 packed; half2 unpacked[4]; }; template struct PackedOn16Bytes { }; template <> struct PackedOn16Bytes { using Type = PackedFloat; }; template <> struct PackedOn16Bytes { using Type = PackedHalf; }; #ifdef ENABLE_BF16 using PackedBFloat16 = union { int4 packed; __nv_bfloat162 unpacked[4]; }; template <> struct PackedOn16Bytes<__nv_bfloat16> { using Type = PackedBFloat16; }; #endif // add two 128b data template inline __device__ int4 add128b(T& a, T& b) { T c; c.unpacked[0] = a.unpacked[0] + b.unpacked[0]; c.unpacked[1] = a.unpacked[1] + b.unpacked[1]; c.unpacked[2] = a.unpacked[2] + b.unpacked[2]; c.unpacked[3] = a.unpacked[3] + b.unpacked[3]; return c.packed; } __inline__ __device__ void multi_gpu_barrier(uint32_t** signals, uint32_t const flag, size_t const local_rank, size_t const world_size, int const tidx, int const bidx) { // After this function, at least one block in each GPU has reached the barrier if (tidx < world_size) { // we can think of signals having the shape [world_size, world_size] // Dimension 0 is the "listening" dimension, dimension 1 is "emitting" dimension // Block 0 broadcasts its flag (local_rank on emitting dimension) to all receivers size_t offset = (flag % 2) ? world_size : 0; if (bidx == 0) { st_flag_release(flag, signals[tidx] + offset + local_rank); } // All blocks check that corresponding block 0 on other GPUs have set the flag // No deadlock because block #0 is always the first block started uint32_t* peer_barrier_d = signals[local_rank] + offset + tidx; while (ld_flag_acquire(peer_barrier_d) != flag) { } } __syncthreads(); } __inline__ __device__ void block_barrier(uint32_t** signals, uint32_t const flag, size_t const local_rank, size_t const world_size, int const tidx, int const bidx, int const grid_size) { // After this function, the block of id == bidx of each GPU has reached the barrier if (tidx < world_size) { // we can think of signals having the shape [world_size, 2, num_blocks, world_size] // (+ an offset on dim 2 to account for flags used in multi_gpu_barrier) // Dimension 0 is the "listening" dimension, dimension 3 is "emitting" dimension // Block broadcast its flag (local_rank on emitting dimension) to all receivers uint32_t flag_block_offset = world_size + bidx * world_size; if (flag % 2 == 1) { flag_block_offset += (grid_size + 1) * world_size; } st_flag_release(flag, signals[tidx] + flag_block_offset + local_rank); // Blocks check that corresponding blocks on other GPUs have also set the flag uint32_t* peer_barrier_d = signals[local_rank] + flag_block_offset + tidx; while (ld_flag_acquire(peer_barrier_d) != flag) { } } __syncthreads(); } namespace reduce_fusion { namespace details { static constexpr int kBytesPerAccess = 16; static constexpr int kWarpSize = 32; static constexpr int kMaxCtaSize = 1024; }; // namespace details inline __device__ float warp_reduce_sum(float val) { val += __shfl_xor_sync(~0, val, 16); val += __shfl_xor_sync(~0, val, 8); val += __shfl_xor_sync(~0, val, 4); val += __shfl_xor_sync(~0, val, 2); val += __shfl_xor_sync(~0, val, 1); return val; } inline __device__ float block_reduce_sum(float val) { __shared__ float smem[details::kWarpSize]; int lane_id = threadIdx.x % details::kWarpSize, warp_id = threadIdx.x / details::kWarpSize, warp_num = blockDim.x / details::kWarpSize; val = warp_reduce_sum(val); if (lane_id == 0) { smem[warp_id] = val; } __syncthreads(); val = lane_id < warp_num ? smem[lane_id] : 0.f; val = warp_reduce_sum(val); return val; } template inline __device__ float accumulate(float acc, PackedStruct& vec) { static constexpr int kLoopNum = sizeof(PackedStruct) / sizeof(T); #pragma unroll for (int i = 0; i < kLoopNum; ++i) { float v = static_cast(reinterpret_cast(vec.unpacked)[i]); acc += v * v; } return acc; } template inline __device__ int4 rms_norm(float denom, PackedStruct& vec, PackedStruct& weight) { static constexpr int kLoopNum = sizeof(PackedStruct) / sizeof(T); PackedStruct ret; #pragma unroll for (int i = 0; i < kLoopNum; ++i) { float v1 = static_cast(reinterpret_cast(vec.unpacked)[i]); if constexpr (Affine) { float v2 = static_cast(reinterpret_cast(weight.unpacked)[i]); reinterpret_cast(ret.unpacked)[i] = static_cast(__fdividef(v1, denom) * v2); } else { reinterpret_cast(ret.unpacked)[i] = static_cast(__fdividef(v1, denom)); } } return ret.packed; } template __global__ void rms_norm_kernel(AllReduceParams params) { static constexpr int kPackedSize = details::kBytesPerAccess / sizeof(T); using PackedStruct = typename PackedOn16Bytes::Type; extern __shared__ uint8_t smem_ptr[]; T* smem = reinterpret_cast(smem_ptr); int bid = blockIdx.x, tid = threadIdx.x; T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * params.fusion_params.hidden_size; int thread_offset = tid * kPackedSize; if constexpr (Residual) { residual_buffer += block_offset; } local_final_output_buffer += block_offset; intermediate_buffer += block_offset; #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaGridDependencySynchronize(); #endif PackedStruct inter_vec, weight_vec; float acc = 0.f; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * kPackedSize) { inter_vec.packed = *reinterpret_cast(intermediate_buffer + offset); if constexpr (Bias) { PackedStruct bias_vec; bias_vec.packed = *reinterpret_cast(bias_buffer + offset); inter_vec.packed = add128b(inter_vec, bias_vec); } if constexpr (Residual) { PackedStruct residual_vec; residual_vec.packed = *reinterpret_cast(residual_buffer + offset); inter_vec.packed = add128b(inter_vec, residual_vec); *reinterpret_cast(intermediate_buffer + offset) = inter_vec.packed; } acc = accumulate(acc, inter_vec); if constexpr (UseSmem) { *reinterpret_cast(&smem[offset]) = inter_vec.packed; } } acc = block_reduce_sum(acc); float denom = __fsqrt_rn(__fdividef(acc, params.fusion_params.hidden_size) + params.fusion_params.eps); for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * kPackedSize) { if constexpr (UseSmem) { inter_vec.packed = *reinterpret_cast(&smem[offset]); } if constexpr (Affine) { weight_vec.packed = *reinterpret_cast(weight_buffer + offset); } inter_vec.packed = rms_norm(denom, inter_vec, weight_vec); *reinterpret_cast(&local_final_output_buffer[offset]) = inter_vec.packed; } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template void rms_norm_kernel_launcher(AllReduceParams params, cudaStream_t stream) { static constexpr int kPackedSize = details::kBytesPerAccess / sizeof(T); TLLM_CHECK(params.fusion_params.hidden_size % kPackedSize == 0); int need_threads = params.fusion_params.hidden_size / kPackedSize; int cta_size; if (need_threads <= details::kMaxCtaSize) { cta_size = (need_threads + details::kWarpSize - 1) / details::kWarpSize * details::kWarpSize; } else { cta_size = details::kMaxCtaSize; } int cta_num = params.elts_total / params.fusion_params.hidden_size; int smem_size = 0; if (cta_size * details::kBytesPerAccess / sizeof(T) < params.fusion_params.hidden_size) { smem_size = params.fusion_params.hidden_size * sizeof(T); if (tensorrt_llm::common::getEnvEnableFDL()) { TLLM_LOG_DEBUG("Enable FDL in rms_norm_kernel"); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = 1; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; TLLM_CUDA_CHECK( cudaLaunchKernelEx(&kernelConfig, rms_norm_kernel, params)); } else { rms_norm_kernel<<>>(params); } } else { if (tensorrt_llm::common::getEnvEnableFDL()) { TLLM_LOG_DEBUG("Enable FDL in rms_norm_kernel"); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = 1; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; TLLM_CUDA_CHECK( cudaLaunchKernelEx(&kernelConfig, rms_norm_kernel, params)); } else { rms_norm_kernel<<>>(params); } } } template static __global__ void __launch_bounds__(1024, 1) one_shot_all_reduce_norm_kernel(AllReduceParams params) { static constexpr int kPackedSize = details::kBytesPerAccess / sizeof(T); using PackedStruct = typename PackedOn16Bytes::Type; extern __shared__ uint8_t smem_ptr[]; T* smem = reinterpret_cast(smem_ptr); int bid = blockIdx.x, tid = threadIdx.x; int norm_num = params.elts_total / params.fusion_params.hidden_size; int norm_per_block = (norm_num + gridDim.x - 1) / gridDim.x; int norm_this_block = std::min(norm_per_block, norm_num - bid * norm_per_block); T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T const* bias_buffer = reinterpret_cast(params.fusion_params.bias_buffer); T const* residual_buffer = reinterpret_cast(params.fusion_params.residual_buffer); T const* weight_buffer = reinterpret_cast(params.fusion_params.weight_buffer); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_final_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); T* intermediate_buffer = reinterpret_cast(params.fusion_params.intermediate_buffer); int block_offset = bid * norm_per_block * params.fusion_params.hidden_size; int thread_offset = tid * kPackedSize; local_input_buffer += block_offset; residual_buffer += block_offset; local_shared_buffer += block_offset; local_final_output_buffer += block_offset; intermediate_buffer += block_offset; T* buffers[RanksPerNode]; #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { int rank = (params.local_rank + ii) % RanksPerNode; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaGridDependencySynchronize(); #endif for (int offset = thread_offset; offset < norm_this_block * params.fusion_params.hidden_size; offset += blockDim.x * kPackedSize) { *reinterpret_cast(&local_shared_buffer[offset]) = *reinterpret_cast(&local_input_buffer[offset]); } block_barrier( params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RanksPerNode, tid, bid, gridDim.x); for (int norm_idx = 0; norm_idx < norm_this_block; ++norm_idx) { int norm_offset = norm_idx * params.fusion_params.hidden_size; float acc = 0.f; PackedStruct sum_vec, weight_vec, bias_vec, residual_vec; for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * kPackedSize) { PackedStruct vals[RanksPerNode]; sum_vec.packed = {0, 0, 0, 0}; if constexpr (Bias) { bias_vec.packed = *reinterpret_cast(&bias_buffer[offset]); } residual_vec.packed = *reinterpret_cast(&residual_buffer[norm_offset + offset]); #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { vals[ii].packed = *reinterpret_cast(&buffers[ii][block_offset + norm_offset + offset]); } #pragma unroll for (int ii = 0; ii < RanksPerNode; ++ii) { sum_vec.packed = add128b(sum_vec, vals[ii]); } if constexpr (Bias) { sum_vec.packed = add128b(sum_vec, bias_vec); } sum_vec.packed = add128b(sum_vec, residual_vec); *reinterpret_cast(&intermediate_buffer[norm_offset + offset]) = sum_vec.packed; acc = accumulate(acc, sum_vec); if constexpr (UseSmem) { *reinterpret_cast(&smem[offset]) = sum_vec.packed; } } acc = block_reduce_sum(acc); float denom = __fsqrt_rn(__fdividef(acc, params.fusion_params.hidden_size) + params.fusion_params.eps); for (int offset = thread_offset; offset < params.fusion_params.hidden_size; offset += blockDim.x * kPackedSize) { if constexpr (UseSmem) { sum_vec.packed = *reinterpret_cast(&smem[offset]); } if constexpr (Affine) { weight_vec.packed = *reinterpret_cast(weight_buffer + offset); } sum_vec.packed = rms_norm(denom, sum_vec, weight_vec); *reinterpret_cast(&local_final_output_buffer[norm_offset + offset]) = sum_vec.packed; } } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaTriggerProgrammaticLaunchCompletion(); #endif } template void one_shot_all_reduce_norm_kernel_launcher(AllReduceParams params, cudaStream_t stream) { static constexpr int kPackedSize = details::kBytesPerAccess / sizeof(T); TLLM_CHECK(params.fusion_params.hidden_size % kPackedSize == 0); int need_threads = params.fusion_params.hidden_size / kPackedSize; int cta_size; if (need_threads <= details::kMaxCtaSize) { cta_size = (need_threads + details::kWarpSize - 1) / details::kWarpSize * details::kWarpSize; } else { cta_size = details::kMaxCtaSize; } int norm_num = params.elts_total / params.fusion_params.hidden_size; int cta_num = std::min(norm_num, static_cast(MAX_ALL_REDUCE_BLOCKS)); int smem_size = 0; if (cta_size * kPackedSize < params.fusion_params.hidden_size) { smem_size = params.fusion_params.hidden_size * sizeof(T); if (tensorrt_llm::common::getEnvEnableFDL()) { TLLM_LOG_DEBUG("Enable FDL in one_shot_all_reduce_norm_kernel"); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = 1; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; TLLM_CUDA_CHECK(cudaLaunchKernelEx( &kernelConfig, one_shot_all_reduce_norm_kernel, params)); } else { one_shot_all_reduce_norm_kernel <<>>(params); } } else { if (tensorrt_llm::common::getEnvEnableFDL()) { cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = cta_num; kernelConfig.blockDim = cta_size; kernelConfig.dynamicSmemBytes = smem_size; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = 1; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; TLLM_LOG_DEBUG("Enable FDL in one_shot_all_reduce_norm_kernel"); TLLM_CUDA_CHECK(cudaLaunchKernelEx( &kernelConfig, one_shot_all_reduce_norm_kernel, params)); } else { one_shot_all_reduce_norm_kernel <<>>(params); } } } }; // namespace reduce_fusion template static __global__ void oneShotAllReduceKernel(AllReduceParams params) { // Suppose that two GPUs participate in the AR exchange, and we start four blocks. // The message is partitioned into chunks as detailed below: // message // |-------------------| // GPU 0 | B0 | B1 | B2 | B3 | // GPU 1 | B0 | B1 | B2 | B3 | // // Here the step-by-step behavior of one block: // 1. B0 copies the chunk it is responsible for, from local_input to shareable buffer // 2. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier) // 3. B0 on GPU 0 pull and sum the chunk from GPU 1, writes the result to local_output // // With COPY_INPUT == false, skip step 1. and use gpu_barrier instead of block barrier during step 2. // We only to know if the other GPU as arrived at the AR kernel, that would mean that data is ready // // With PUSH_MODE, we consider that the shared buffer is of size: // params.peer_comm_buffer_ptrs: [world_size, world_size, message_size] // // Here the step-by-step behavior of one block: // 1. B0 push the chunk is it responsible for into all other GPUs: // params.peer_comm_buffer_ptrs[:, local_gpu, B0 slice] // 2. block sync so the block is shared by other GPUs // 3. Reduce along second dimension params.peer_comm_buffer_ptrs[local_gpu, :, B0 slice] int const bidx = blockIdx.x; int const tidx = threadIdx.x; int const grid_size = gridDim.x; // The number of elements packed into one for comms static constexpr int PACKED_ELTS = 16 / sizeof(T); using PackedStruct = typename PackedOn16Bytes::Type; T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); // Start and end offsets of the thread size_t const chunk_start = bidx * params.elts_per_block + tidx * PACKED_ELTS; size_t const chunk_end = std::min((bidx + 1) * params.elts_per_block, params.elts_total); T* buffers[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // buffers[0] is always the local buffers. Helps load balancing reads. int rank = (params.local_rank + ii) % RANKS_PER_NODE; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } if constexpr (PUSH_MODE || COPY_INPUT) { // Copy from local buffer to shareable buffer for (size_t iter_offset = chunk_start; iter_offset < chunk_end; iter_offset += blockDim.x * PACKED_ELTS) { if constexpr (PUSH_MODE) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { *reinterpret_cast(&buffers[ii][params.local_rank * params.elts_total + iter_offset]) = *reinterpret_cast(&local_input_buffer[iter_offset]); } } else { *reinterpret_cast(&local_shared_buffer[iter_offset]) = *reinterpret_cast(&local_input_buffer[iter_offset]); } } // wait for equivalent blocks of other GPUs to have copied data to their shareable buffer block_barrier( params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); } else { // In the non-copy case, we assume that once the kernel has been started, data is ready to be consumed multi_gpu_barrier( params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx); } // Each block accumulates the values from the different GPUs on the same node. for (size_t iter_offset = chunk_start; iter_offset < chunk_end; iter_offset += blockDim.x * PACKED_ELTS) { // Iterate over the different ranks/devices on the node to load the values. PackedStruct vals[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { if constexpr (PUSH_MODE) { vals[ii].packed = *reinterpret_cast(&buffers[params.local_rank][ii * params.elts_total + iter_offset]); } else { vals[ii].packed = *reinterpret_cast(&buffers[ii][iter_offset]); } } // Sum the values from the different ranks. PackedStruct sums; sums.packed = {0, 0, 0, 0}; #pragma unroll for (int rank = 0; rank < RANKS_PER_NODE; ++rank) { // Always reduce from rank 0 to ensure stable reduce order. int ii = (rank + RANKS_PER_NODE - params.local_rank) % RANKS_PER_NODE; sums.packed = add128b(sums, vals[ii]); } // Store to the destination buffer. *reinterpret_cast(&local_output_buffer[iter_offset]) = sums.packed; } } template static __global__ void __launch_bounds__(512, 1) twoShotAllReduceKernel(AllReduceParams params) { // Suppose that two GPUs participate in the AR exchange, and we start two blocks. // The message is partitioned into chunks as detailed below: // message // |-------------------| // |--GPU 0--|--GPU 1--| (GPU responsibility parts) // GPU 0 | B0 | B1 | B0 | B1 | // GPU 1 | B0 | B1 | B0 | B1 | // // Here the step-by-step behavior of one block: // 1. B0 copies all chunks is it responsible for, from local_input to shareable buffer // 2. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier #0) // 3. B0 on GPU 0 gather and sum the B0 chunks from GPU 1, that are in the GPU 0 responsibility // part (the first half of the message, see GPU responsibility row above) // 3bis. Likewise, B0 on GPU 1 copies and sum the chunks for GPU 0, // where GPU 1 is responsible: the second half of the message. // 4. B0 on GPU 0 and B0 on GPU 1 wait for each other (block_barrier #1) // 5. B0 writes result to local_output. It gathers each chunk from its responsible GPU. // For example, here it reads the first chunk from GPU 0 and second chunk from GPU 1. // // With COPY_INPUT == false, skip step 1. and use gpu_barrier instead of block barrier during step 2. // We only to know if the other GPU as arrived at the AR kernel, that would mean that data is ready // to be read. // // Note that compared to one-shot, one block (CTA) writes multiple input chunks and write multiple output chunks. // However, it's only responsible for the summation of a single chunk. // // With PUSH_MODE, we consider that the shared buffer is of size: // params.peer_comm_buffer_ptrs: [world_size, world_size, message_size / world_size] // // Here the step-by-step behavior of one block: // 1. B0 push the chunks is it responsible for into the corresponding GPUs: // params.peer_comm_buffer_ptrs[target_gpu, local_gpu, current B0 slice] // 2. block sync so the blocks have been shared by other GPUs // 3. Reduce along second dimension params.peer_comm_buffer_ptrs[local_gpu, :, B0 slice] // 4. block barrier (corresponding blocks have finished reduction) // 5. pull and write on local buffer, by reading params.peer_comm_buffer_ptrs[:, 0, B0 slice] (reduction result is // written at index 0 of 2nd dim) int const bidx = blockIdx.x; int const tidx = threadIdx.x; int const grid_size = gridDim.x; // The number of elements packed into one for comms static constexpr int PACKED_ELTS = 16 / sizeof(T); using PackedType = typename PackedOn16Bytes::Type; T const* local_input_buffer = reinterpret_cast(params.local_input_buffer_ptr); T* local_shared_buffer = reinterpret_cast(params.peer_comm_buffer_ptrs[params.local_rank]); T* local_output_buffer = reinterpret_cast(params.local_output_buffer_ptr); size_t const chunk_start = bidx * params.elts_per_block + tidx * PACKED_ELTS; size_t const chunk_end = min(chunk_start + params.elts_per_block, params.elts_per_rank); T* buffers[RANKS_PER_NODE]; int ranks[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // A mapping of the ranks to scatter reads as much as possible int rank = (params.local_rank + ii) % RANKS_PER_NODE; ranks[ii] = rank; buffers[ii] = reinterpret_cast(params.peer_comm_buffer_ptrs[rank]); } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaGridDependencySynchronize(); #endif if constexpr (PUSH_MODE || COPY_INPUT) { // Copy all blocks from local buffer to shareable buffer for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * PACKED_ELTS) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { size_t offset_rank = ranks[ii] * params.elts_per_rank + local_offset; if (offset_rank >= params.elts_total) { continue; } if constexpr (PUSH_MODE) { *reinterpret_cast(&buffers[ii][params.local_rank * params.elts_per_rank + local_offset]) = *reinterpret_cast(&local_input_buffer[offset_rank]); } else { *reinterpret_cast(&local_shared_buffer[offset_rank]) = *reinterpret_cast(&local_input_buffer[offset_rank]); } } } block_barrier( params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); } else { // In the non-copy case, we assume that once the kernel has been started, data is ready to be consumed multi_gpu_barrier( params.peer_barrier_ptrs_in, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx); } // Each block accumulates the values from the different GPUs on the same node. for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * PACKED_ELTS) { size_t const responsible_block_offset = local_offset + params.rank_offset; // Iterate over the different ranks/devices on the node to load the values. PackedType vals[RANKS_PER_NODE]; #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { if constexpr (PUSH_MODE) { vals[ii].packed = *reinterpret_cast(&local_shared_buffer[ii * params.elts_per_rank + local_offset]); } else { vals[ii].packed = *reinterpret_cast(&buffers[ii][responsible_block_offset]); } } // Sum the values from the different ranks. PackedType sums; sums.packed = {0, 0, 0, 0}; #pragma unroll for (int rank = 0; rank < RANKS_PER_NODE; ++rank) { // Always reduce from rank 0 to ensure stable reduce order. int ii = (rank + RANKS_PER_NODE - params.local_rank) % RANKS_PER_NODE; sums.packed = add128b(sums, vals[ii]); } // Store to the local buffer. if constexpr (PUSH_MODE) { *reinterpret_cast(&local_shared_buffer[local_offset]) = sums.packed; } else { *reinterpret_cast(&local_shared_buffer[responsible_block_offset]) = sums.packed; } } block_barrier( params.peer_barrier_ptrs_out, params.barrier_flag, params.local_rank, RANKS_PER_NODE, tidx, bidx, grid_size); // Gather all needed elts from other intra-node ranks for (size_t local_offset = chunk_start; local_offset < chunk_end; local_offset += blockDim.x * PACKED_ELTS) { #pragma unroll for (int ii = 0; ii < RANKS_PER_NODE; ++ii) { // use round-robin gathering from other ranks size_t offset_rank = ranks[ii] * params.elts_per_rank + local_offset; if (offset_rank >= params.elts_total) { continue; } PackedType sums, residual_vec, bias_vec; if constexpr (Bias) { bias_vec.packed = *reinterpret_cast(reinterpret_cast(params.fusion_params.bias_buffer) + offset_rank % params.fusion_params.hidden_size); } if constexpr (Residual) { residual_vec.packed = *reinterpret_cast( reinterpret_cast(params.fusion_params.residual_buffer) + offset_rank); } if constexpr (PUSH_MODE) { *reinterpret_cast(&local_output_buffer[offset_rank]) = *reinterpret_cast(&buffers[ii][local_offset]); sums.packed = *reinterpret_cast(&buffers[ii][local_offset]); } else { *reinterpret_cast(&local_output_buffer[offset_rank]) = *reinterpret_cast(&buffers[ii][offset_rank]); sums.packed = *reinterpret_cast(&buffers[ii][offset_rank]); } if constexpr (Bias) { sums.packed = add128b(sums, bias_vec); } if constexpr (Residual) { sums.packed = add128b(sums, residual_vec); } *reinterpret_cast(&local_output_buffer[offset_rank]) = sums.packed; } } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) cudaTriggerProgrammaticLaunchCompletion(); #endif } bool configurationSupported(AllReduceStrategyType algo, size_t msg_size, size_t n_ranks, nvinfer1::DataType type) { size_t elts_per_thread = 16 / common::getDTypeSize(type); int const msg_align = (algo == AllReduceStrategyType::TWOSHOT) ? n_ranks * elts_per_thread : elts_per_thread; bool supported_algo = (algo == AllReduceStrategyType::ONESHOT || algo == AllReduceStrategyType::TWOSHOT); return supported_algo && (msg_size % msg_align == 0); } std::tuple kernelLaunchConfig(AllReduceStrategyType algo, AllReduceParams& params, size_t elts_per_thread) { int blocks_per_grid = 1, threads_per_block = DEFAULT_BLOCK_SIZE; switch (algo) { case AllReduceStrategyType::ONESHOT: { TLLM_CHECK(params.elts_total % elts_per_thread == 0); size_t const total_threads = roundUp(params.elts_total / elts_per_thread, WARP_SIZE); threads_per_block = std::min(DEFAULT_BLOCK_SIZE, total_threads); blocks_per_grid = std::min(static_cast(MAX_ALL_REDUCE_BLOCKS), divUp(total_threads, threads_per_block)); params.elts_per_block = roundUp(divUp(params.elts_total, blocks_per_grid), elts_per_thread); break; } case AllReduceStrategyType::TWOSHOT: { TLLM_CHECK(params.elts_total % (elts_per_thread * params.ranks_per_node) == 0); size_t const total_threads = roundUp(params.elts_total / (elts_per_thread * params.ranks_per_node), WARP_SIZE); /* threads_per_block = std::min(DEFAULT_BLOCK_SIZE, total_threads); blocks_per_grid = std::min(static_cast(MAX_ALL_REDUCE_BLOCKS), divUp(total_threads, threads_per_block)); */ while (total_threads % blocks_per_grid != 0 || total_threads / blocks_per_grid > DEFAULT_BLOCK_SIZE) { blocks_per_grid += 1; } threads_per_block = total_threads / blocks_per_grid; // NOTE: need to adjust here if (blocks_per_grid > MAX_ALL_REDUCE_BLOCKS) { size_t iter_factor = 1; while (blocks_per_grid / iter_factor > MAX_ALL_REDUCE_BLOCKS || blocks_per_grid % iter_factor) { iter_factor += 1; } blocks_per_grid /= iter_factor; } params.elts_per_rank = params.elts_total / params.ranks_per_node; params.rank_offset = params.local_rank * params.elts_per_rank; params.elts_per_block = roundUp(divUp(params.elts_per_rank, blocks_per_grid), elts_per_thread); break; } default: TLLM_THROW("Algorithm not supported here."); } return std::make_tuple(blocks_per_grid, threads_per_block); } template void AllReduceNormKernelLaunch(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { TLLM_CHECK_WITH_INFO(fusionOp == AllReduceFusionOp::RESIDUAL_RMS_NORM, "Unsupported AllReduceFusionOp: %d", static_cast(fusionOp)); if (algo == AllReduceStrategyType::ONESHOT) { reduce_fusion::one_shot_all_reduce_norm_kernel_launcher(params, stream); } else { TLLM_CHECK_WITH_INFO(!(USE_MEMCPY && PUSH_MODE), "Memcpy cannot be used with PUSH_MODE."); size_t elts_per_thread = 16 / sizeof(T); auto [blocks_per_grid, threads_per_block] = kernelLaunchConfig(algo, params, elts_per_thread); if (USE_MEMCPY) { cudaMemcpyAsync(params.peer_comm_buffer_ptrs[params.local_rank], params.local_input_buffer_ptr, params.elts_total * sizeof(T), cudaMemcpyDeviceToDevice, stream); } auto output_ptr = params.local_output_buffer_ptr; params.local_output_buffer_ptr = params.fusion_params.intermediate_buffer; if (tensorrt_llm::common::getEnvEnableFDL()) { TLLM_LOG_DEBUG("Enable FDL in twoShotAllReduceKernel"); cudaLaunchConfig_t kernelConfig = {0}; kernelConfig.gridDim = blocks_per_grid; kernelConfig.blockDim = threads_per_block; kernelConfig.dynamicSmemBytes = 0; kernelConfig.stream = stream; cudaLaunchAttribute attribute[1]; attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attribute[0].val.programmaticStreamSerializationAllowed = 1; kernelConfig.attrs = attribute; kernelConfig.numAttrs = 1; TLLM_CUDA_CHECK(cudaLaunchKernelEx( &kernelConfig, twoShotAllReduceKernel, params)); } else { twoShotAllReduceKernel <<>>(params); } params.local_output_buffer_ptr = output_ptr; reduce_fusion::rms_norm_kernel_launcher(params, stream); } } template void AllReduceNormDispatch(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { if (params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { AllReduceNormKernelLaunch( algo, config, fusionOp, params, stream); } else if (params.fusion_params.bias_buffer && !params.fusion_params.weight_buffer) { AllReduceNormKernelLaunch( algo, config, fusionOp, params, stream); } else if (!params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { AllReduceNormKernelLaunch( algo, config, fusionOp, params, stream); } else { AllReduceNormKernelLaunch( algo, config, fusionOp, params, stream); } } template void AllReduceDispatch(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { TLLM_CHECK(fusionOp == AllReduceFusionOp::NONE); TLLM_CHECK_WITH_INFO(!(USE_MEMCPY && PUSH_MODE), "Memcpy cannot be used with PUSH_MODE."); size_t elts_per_thread = 16 / sizeof(T); auto [blocks_per_grid, threads_per_block] = kernelLaunchConfig(algo, params, elts_per_thread); if (USE_MEMCPY) { cudaMemcpyAsync(params.peer_comm_buffer_ptrs[params.local_rank], params.local_input_buffer_ptr, params.elts_total * sizeof(T), cudaMemcpyDeviceToDevice, stream); } if (algo == AllReduceStrategyType::ONESHOT) { oneShotAllReduceKernel <<>>(params); } else { twoShotAllReduceKernel <<>>(params); } } template void AllReduceDispatchMemcpy(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { if (fusionOp == AllReduceFusionOp::NONE) { AllReduceDispatch(algo, config, fusionOp, params, stream); } else { AllReduceNormDispatch(algo, config, fusionOp, params, stream); } } template void AllReduceDispatchPushMode(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { if (static_cast>(config) & static_cast>(AllReduceStrategyConfig::USE_MEMCPY)) { AllReduceDispatchMemcpy(algo, config, fusionOp, params, stream); } else { AllReduceDispatchMemcpy(algo, config, fusionOp, params, stream); } } template //, bool USE_MEMCPY = false, bool PUSH_MODE = false> void AllReduceDispatchRanksPerNode(AllReduceStrategyType algo, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, AllReduceParams& params, cudaStream_t stream) { if (static_cast>(config) & static_cast>(AllReduceStrategyConfig::PUSH_MODE)) { AllReduceDispatchPushMode(algo, config, fusionOp, params, stream); } else { AllReduceDispatchPushMode(algo, config, fusionOp, params, stream); } } template void AllReduceDispatchType(AllReduceParams& params, AllReduceStrategyType strat, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, cudaStream_t stream) { switch (params.ranks_per_node) { case 2: AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, stream); break; case 4: AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, stream); break; case 6: AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, stream); break; case 8: AllReduceDispatchRanksPerNode(strat, config, fusionOp, params, stream); break; default: TLLM_THROW("Custom all reduce only supported on {2, 4, 6, 8} GPUs per node."); } } AllReduceParams AllReduceParams::deserialize(int32_t const* buffer, size_t tpSize, size_t tpRank, uint32_t flag_value) { void* const* buffer_ptrs = reinterpret_cast(buffer); AllReduceParams params; // Even plugins use ping buffers, odd plugins use pong. // That way, we don't need to wait for other GPUs to be done // before copying input tensor to workspace. auto const buffer_offset = (flag_value % 2 == 0) ? 0 : tpSize; for (int i = 0; i < tpSize; ++i) { params.peer_comm_buffer_ptrs[i] = buffer_ptrs[buffer_offset + i]; } for (int i = 0; i < tpSize; ++i) { params.peer_barrier_ptrs_in[i] = reinterpret_cast(buffer_ptrs[2 * tpSize + i]); } for (int i = 0; i < tpSize; ++i) { params.peer_barrier_ptrs_out[i] = reinterpret_cast(buffer_ptrs[3 * tpSize + i]); } params.barrier_flag = flag_value; params.ranks_per_node = tpSize; params.local_rank = tpRank; return params; } void customAllReduce(kernels::AllReduceParams& params, nvinfer1::DataType dataType, AllReduceStrategyType strat, AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, cudaStream_t stream) { TLLM_CHECK_WITH_INFO(configurationSupported(strat, params.elts_total, params.ranks_per_node, dataType), "Custom all-reduce configuration unsupported"); sync_check_cuda_error(); switch (dataType) { case nvinfer1::DataType::kFLOAT: AllReduceDispatchType(params, strat, config, fusionOp, stream); break; case nvinfer1::DataType::kHALF: AllReduceDispatchType(params, strat, config, fusionOp, stream); break; #ifdef ENABLE_BF16 case nvinfer1::DataType::kBF16: AllReduceDispatchType<__nv_bfloat16>(params, strat, config, fusionOp, stream); break; #endif default: TLLM_THROW("Unsupported dataType for customAllReduce"); } sync_check_cuda_error(); } template void launchResidualRmsNormKernel(kernels::AllReduceParams& params, cudaStream_t stream) { if (params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { reduce_fusion::rms_norm_kernel_launcher(params, stream); } else if (params.fusion_params.bias_buffer && !params.fusion_params.weight_buffer) { reduce_fusion::rms_norm_kernel_launcher(params, stream); } else if (!params.fusion_params.bias_buffer && params.fusion_params.weight_buffer) { reduce_fusion::rms_norm_kernel_launcher(params, stream); } else { reduce_fusion::rms_norm_kernel_launcher(params, stream); } } void residualRmsNorm(kernels::AllReduceParams& params, nvinfer1::DataType dataType, cudaStream_t stream) { sync_check_cuda_error(); switch (dataType) { case nvinfer1::DataType::kFLOAT: launchResidualRmsNormKernel(params, stream); break; case nvinfer1::DataType::kHALF: launchResidualRmsNormKernel(params, stream); break; #ifdef ENABLE_BF16 case nvinfer1::DataType::kBF16: launchResidualRmsNormKernel<__nv_bfloat16>(params, stream); break; #endif default: TLLM_THROW("Unsupported dataType for customAllReduce"); } sync_check_cuda_error(); } } // namespace tensorrt_llm::kernels