from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from tensorrt_llm.serve.openai_protocol import StreamOptions class ScaffoldingOutput: def __init__(self): self.output_str = None @dataclass class Task: # Reserve for custom input params. custom_input_params: Optional[dict] = None # Scaffolding delivers the task to the Worker by worker_tag. worker_tag: str = field(default=None) # Reserve for custom output params. custom_output_params: Optional[dict] = None class TaskStatus(Enum): SUCCESS = "success" WORKER_NOT_SUPPORTED = "worker_not_supported" WORKER_EXECEPTION = "worker_exception" @dataclass class GenerationTask(Task): # input field input_tokens: Optional[List[int]] = None input_str: Optional[str] = None skip_tokenizer: bool = False skip_detokenizer: bool = False # sampling params for openai # Ordered by official OpenAI API documentation # https://platform.openai.com/docs/api-reference/completions/create # The special case is `num_logprobs`, its original name si `logprobs` but conflicted by the result field best_of: Optional[int] = None echo: Optional[bool] = False frequency_penalty: Optional[float] = 0.0 logit_bias: Optional[Dict[str, float]] = None num_logprobs: Optional[int] = None max_tokens: Optional[int] = 2048 n: int = 1 presence_penalty: Optional[float] = 0.0 seed: Optional[int] = None stop: Optional[Union[str, List[str]]] = field(default_factory=list) stream: Optional[bool] = False stream_options: Optional[StreamOptions] = None suffix: Optional[str] = None temperature: Optional[float] = None top_p: Optional[float] = None user: Optional[str] = None # sampling params top_k: Optional[int] = None return_context_logits: Optional[bool] = False # suggest to use Controller.WorkerTag # anyway, users need to ensure that the value of the worker_tag can be found in the scaffoldingLlm's workers map worker_tag: Union[str, "Controller.WorkerTag"] = None # result field output_tokens: List[int] = None output_str: Optional[str] = None cumulative_logprob: Optional[float] = None logprobs: Optional[List[float]] = None context_logits: Optional[torch.Tensor] = None @staticmethod def create_from_prompt(prompt: str) -> "GenerationTask": task = GenerationTask() task.input_str = prompt task.skip_tokenizer = False task.skip_detokenizer = False return task def create_scaffolding_output(self) -> "ScaffoldingOutput": output = ScaffoldingOutput() output.output_str = self.output_str return output @dataclass class RewardTask(Task): # input field input_tokens: Optional[List[int]] = field(default=None) input_str: Optional[str] = field(default=None)