#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import pathlib as _pl import platform as _pf import sys as _sys from build_engines_utils import run_command, wincopy import tensorrt_llm.bindings as _tb from tensorrt_llm.bindings.internal.testing import ModelSpec def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, convert_extra_args, build_extra_args): ckpt_dir = engine_dir / 'ckpt' convert_cmd = [ _sys.executable, "examples/models/core/llama/convert_checkpoint.py" ] + ([f'--model_dir={weight_dir}'] if weight_dir else []) + [ f'--output_dir={ckpt_dir}', '--dtype=float16', ] + convert_extra_args run_command(convert_cmd) build_args = [ 'trtllm-build', f'--checkpoint_dir={ckpt_dir}', f'--output_dir={engine_dir}', '--gpt_attention_plugin=float16', '--gemm_plugin=float16', '--max_batch_size=32', '--max_input_len=40', '--max_seq_len=60', '--max_beam_width=2', '--log_level=error', '--paged_kv_cache=enable', '--remove_input_padding=enable', ] + build_extra_args run_command(build_args) def build_engines(model_cache: str, only_multi_gpu: bool): resources_dir = _pl.Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' model_name = 'Llama-3.2-1B' if model_cache: print("Copy model from model_cache") model_cache_dir = _pl.Path( model_cache) / 'llama-3.2-models' / model_name assert (model_cache_dir.is_dir()), model_cache_dir if _pf.system() == "Windows": wincopy(source=str(model_cache_dir), dest=model_name, isdir=True, cwd=models_dir) else: run_command(["rsync", "-rlptD", str(model_cache_dir), "."], cwd=models_dir) hf_dir = models_dir / model_name assert hf_dir.is_dir(), f"testing {hf_dir}" engine_dir = models_dir / 'rt_engine' / model_name model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) model_spec_obj.use_packed_input() tp_pp_cp_sizes = [(1, 1, 1)] if only_multi_gpu: tp_pp_cp_sizes = [(1, 4, 1), (4, 1, 1), (1, 2, 1), (2, 2, 1), (2, 1, 1), (1, 1, 2), (2, 1, 2)] for tp_size, pp_size, cp_size in tp_pp_cp_sizes: tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu" print(f"\nBuilding fp16 tp{tp_size} pp{pp_size} cp{cp_size} engine") model_spec_obj.use_tensor_parallelism(tp_size) model_spec_obj.use_pipeline_parallelism(pp_size) model_spec_obj.use_context_parallelism(cp_size) build_engine( hf_dir, engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir, [ f'--tp_size={tp_size}', f'--pp_size={pp_size}', f'--cp_size={cp_size}' ], ['--use_paged_context_fmha=disable']) if not only_multi_gpu: print(f"\nBuilding lookahead engine") model_spec_obj.use_tensor_parallelism(1) model_spec_obj.use_pipeline_parallelism(1) model_spec_obj.use_context_parallelism(1) model_spec_obj.use_lookahead_decoding() build_engine( hf_dir, engine_dir / model_spec_obj.get_model_path() / 'tp1-pp1-cp1-gpu', [], [ '--max_draft_len=39', '--speculative_decoding_mode=lookahead_decoding' ]) print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") parser.add_argument( "--only_multi_gpu", action="store_true", help="Flag to build only for Tensor and Pipeline parallelism") build_engines(**vars(parser.parse_args()))