/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/runtimeKernels.h" #include #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; using TensorPtr = std::shared_ptr; using BufferPtr = std::shared_ptr; class RuntimeKernelTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init) { protected: void SetUp() override { mDeviceCount = tc::getDeviceCount(); if (mDeviceCount == 0) GTEST_SKIP(); mStream = std::make_unique(); mManager = std::make_unique(mStream); } void TearDown() override {} int mDeviceCount; std::unique_ptr mManager; BufferManager::CudaStreamPtr mStream; }; TEST_F(RuntimeKernelTest, FillInt32) { SizeType constexpr value{3}; SizeType constexpr size{123}; auto buffer = mManager->gpu(size, nvinfer1::DataType::kINT32); kernels::invokeFill(*buffer, value, *mStream); auto bufferHost = mManager->copyFrom(*buffer, MemoryType::kCPU); auto bufferPtr = bufferCast(*bufferHost); std::vector expected(buffer->getSize(), value); auto anyMismatch = false; for (std::size_t i = 0; i < buffer->getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected[i]) << "Error at index " << i; anyMismatch |= bufferPtr[i] != expected[i]; } buffer.release(); ASSERT_FALSE(anyMismatch); auto tensor = mManager->gpu(ITensor::makeShape({size, size}), nvinfer1::DataType::kINT32); kernels::invokeFill(*tensor, value, *mStream); auto tensorHost = mManager->copyFrom(*tensor, MemoryType::kCPU); auto tensorPtr = bufferCast(*tensorHost); expected.clear(); expected.resize(tensor->getSize(), value); anyMismatch = false; for (std::size_t i = 0; i < tensor->getSize(); ++i) { EXPECT_EQ(tensorPtr[i], expected[i]) << "Error at index " << i; anyMismatch |= tensorPtr[i] != expected[i]; } tensor.release(); ASSERT_FALSE(anyMismatch); } TEST_F(RuntimeKernelTest, AddInt32) { SizeType constexpr value{3}; SizeType constexpr size{123}; auto buffer = mManager->gpu(size, nvinfer1::DataType::kINT32); mManager->setZero(*buffer); kernels::invokeAdd(*buffer, value, *mStream); kernels::invokeAdd(*buffer, value, *mStream); auto bufferHost = mManager->copyFrom(*buffer, MemoryType::kCPU); auto bufferPtr = bufferCast(*bufferHost); std::vector expected(buffer->getSize(), 2 * value); auto anyMismatch = false; for (std::size_t i = 0; i < buffer->getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected[i]) << "Error at index " << i; anyMismatch |= bufferPtr[i] != expected[i]; } buffer.release(); ASSERT_FALSE(anyMismatch); auto tensor = mManager->gpu(ITensor::makeShape({size, size}), nvinfer1::DataType::kINT32); mManager->setZero(*tensor); kernels::invokeAdd(*tensor, value, *mStream); kernels::invokeAdd(*tensor, value, *mStream); auto tensorHost = mManager->copyFrom(*tensor, MemoryType::kCPU); auto tensorPtr = bufferCast(*tensorHost); expected.clear(); expected.resize(tensor->getSize(), 2 * value); anyMismatch = false; for (std::size_t i = 0; i < tensor->getSize(); ++i) { EXPECT_EQ(tensorPtr[i], expected[i]) << "Error at index " << i; anyMismatch |= tensorPtr[i] != expected[i]; } tensor.release(); ASSERT_FALSE(anyMismatch); } TEST_F(RuntimeKernelTest, Transpose) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; auto input = mManager->copyFrom(inputHost, ITensor::makeShape({batchSize, rowSize}), MemoryType::kGPU); TensorPtr output = mManager->gpu(ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); kernels::invokeTranspose(*output, *input, *mStream); auto outputHost = mManager->copyFrom(*output, MemoryType::kCPU); auto outputHostData = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(b, i, rowSize); auto const outputIndex = tc::flat_index2(i, b, batchSize); EXPECT_EQ(outputHostData[outputIndex], inputHost[inputIndex]) << "Error at index (" << b << ',' << i << ')'; } } } TEST_F(RuntimeKernelTest, TransposeWithOutputOffset) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; TensorPtr input = mManager->copyFrom(inputHost, ITensor::makeShape({batchSize, rowSize}), MemoryType::kGPU); TensorPtr output = mManager->gpu(ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); mManager->setZero(*output); for (SizeType sliceId = 0; sliceId < batchSize; ++sliceId) { auto inputView = ITensor::slice(input, sliceId, 1); kernels::invokeTransposeWithOutputOffset(*output, *inputView, sliceId, *mStream); auto outputHost = mManager->copyFrom(*output, MemoryType::kCPU); auto outputHostData = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(b, i, rowSize); auto const outputIndex = tc::flat_index2(i, b, batchSize); auto expected = b <= sliceId ? inputHost[inputIndex] : 0; EXPECT_EQ(outputHostData[outputIndex], expected) << "Error after slice " << sliceId << " at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TransposeWithInputOffset) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; TensorPtr input = mManager->copyFrom(inputHost, ITensor::makeShape({batchSize, rowSize}), MemoryType::kGPU); TensorPtr output = mManager->gpu(ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); mManager->setZero(*output); for (SizeType sliceId = 0; sliceId < rowSize; ++sliceId) { auto outputView = ITensor::slice(output, sliceId, 1); kernels::invokeTransposeWithInputOffset(*outputView, *input, sliceId, *mStream); auto outputHost = mManager->copyFrom(*output, MemoryType::kCPU); auto outputHostData = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(b, i, rowSize); auto const outputIndex = tc::flat_index2(i, b, batchSize); auto expected = i <= sliceId ? inputHost[inputIndex] : 0; EXPECT_EQ(outputHostData[outputIndex], expected) << "Error after slice " << sliceId << " at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, BuildTokenMask) { SizeType constexpr batchSize{7}; std::vector inputLengthsVec(batchSize); std::iota(inputLengthsVec.begin(), inputLengthsVec.end(), 3); auto const maxInputLength = *std::max_element(inputLengthsVec.begin(), inputLengthsVec.end()); SizeType constexpr maxNewTokens{1}; auto const maxSeqLength = maxInputLength + maxNewTokens; TensorPtr inputLengths = mManager->copyFrom(inputLengthsVec, ITensor::makeShape({batchSize, 1}), MemoryType::kGPU); TensorPtr tokenMask = mManager->gpu(ITensor::makeShape({batchSize, maxSeqLength}), nvinfer1::DataType::kINT32); kernels::invokeBuildTokenMask(*tokenMask, *inputLengths, maxInputLength, *mStream); std::vector tokenMaskVec(tokenMask->getSize()); mManager->copy(*tokenMask, tokenMaskVec.data()); for (SizeType i = 0; i < batchSize; ++i) { for (SizeType j = 0; j < maxSeqLength; ++j) { auto const index = i * maxSeqLength + j; if (j < inputLengthsVec[i]) EXPECT_EQ(tokenMaskVec[index], 0) << "tokenMask should be 0 up to inputLengths[i]"; else if (j < maxInputLength) EXPECT_EQ(tokenMaskVec[index], 1) << "tokenMask should be 1 up to maxInputLength"; else EXPECT_EQ(tokenMaskVec[index], 0) << "tokenMask should be 0 after maxInputLength"; } } } TEST_F(RuntimeKernelTest, BuildAttentionMask) { SizeType constexpr batchSize{1}; SizeType constexpr padId{50256}; std::vector const input{padId, 287, 5093, 12, 50256, padId, 11, 30022, 263, 8776, 355, padId}; auto const maxInputLength = static_cast(input.size()); TensorPtr inputIds = mManager->copyFrom(input, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU); TensorPtr attentionMask = mManager->copyFrom(*inputIds, MemoryType::kGPU); kernels::invokeBuildAttentionMask(*attentionMask, padId, *mStream); std::vector attentionMaskVec(attentionMask->getSize()); mManager->copy(*attentionMask, attentionMaskVec.data()); std::vector attentionMaskHost(input); std::for_each(attentionMaskHost.begin(), attentionMaskHost.end(), [padId](auto& x) { x = x != padId; }); for (SizeType i = 0; i < batchSize; ++i) { for (SizeType j = 0; j < maxInputLength; ++j) { auto const index = i * maxInputLength + j; EXPECT_EQ(attentionMaskVec[index], attentionMaskHost[index]) << "Error at index (" << i << ',' << j << ')'; } } } TEST_F(RuntimeKernelTest, ExtendAttentionMask) { SizeType constexpr batchSize{1}; SizeType constexpr padId{50256}; std::vector const input{padId, 287, 5093, 12, 50256, padId, 11, 30022, 263, 8776, 355, padId}; auto const maxInputLength = static_cast(input.size()); TensorPtr inputIds = mManager->copyFrom(input, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU); TensorPtr attentionMask = mManager->copyFrom(*inputIds, MemoryType::kGPU); kernels::invokeBuildAttentionMask(*attentionMask, padId, *mStream); auto attentionMaskHost = mManager->copyFrom(*attentionMask, MemoryType::kCPU); auto const* attentionMaskData = reinterpret_cast(attentionMaskHost->data()); auto const shape = attentionMask->getShape(); auto const nbInputs = shape.d[0]; auto const oldLength = shape.d[1]; auto const newLength = oldLength + 1; auto const newShape = ITensor::makeShape({nbInputs, newLength}); std::vector attentionMaskVec(ITensor::volume(newShape)); for (SizeType i = 0; i < batchSize; ++i) { std::copy(attentionMaskData + i * oldLength, attentionMaskData + (i + 1) * oldLength, std::begin(attentionMaskVec) + i * newLength); attentionMaskVec[(i + 1) * newLength - 1] = 1; } TensorPtr newAttentionMask = mManager->gpu(newShape, nvinfer1::DataType::kINT32); mManager->setZero(*newAttentionMask); kernels::invokeExtendAttentionMask(*newAttentionMask, *attentionMask, *mStream); std::vector newAttentionMaskVec(newAttentionMask->getSize()); mManager->copy(*newAttentionMask, newAttentionMaskVec.data()); for (SizeType i = 0; i < batchSize; ++i) { for (SizeType j = 0; j < oldLength; ++j) { auto const oldIndex = i * oldLength + j; auto const newIndex = i * newLength + j; EXPECT_EQ(attentionMaskVec[oldIndex], newAttentionMaskVec[newIndex]) << "Error at index (" << i << ',' << j << ')'; } EXPECT_EQ(attentionMaskVec[(i + 1) * newLength - 1], 1) << "Error at index (" << i << ',' << (-1) << ')'; } } TEST_F(RuntimeKernelTest, CopyInputToOutput) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; auto const beamWidth = 5; SizeType constexpr maxNewTokens{3}; auto const maxSeqLength = maxInputLength + maxNewTokens; SizeType constexpr padId{50256}; std::vector inputsHost(batchSize * maxInputLength); for (SizeType i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.end(), inputsHost.begin() + i * maxInputLength); } auto inputIds = mManager->copyFrom(inputsHost, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU); std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(ITensor::makeShape({batchSize, beamWidth, maxSeqLength}), nvinfer1::DataType::kINT32); kernels::invokeCopyInputToOutput(*outputIds, *inputIds, *inputLengths, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, MemoryType::kCPU); auto outputIdsHostData = bufferCast(*outputIdsHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << i << ')'; } for (SizeType i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyPackedInputToOutput) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; SizeType constexpr maxNewTokens{3}; auto const beamWidth = 5; auto const maxSeqLength = maxInputLength + maxNewTokens; SizeType constexpr padId{50256}; std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU); std::vector inputOffsetsHost(batchSize + 1); std::inclusive_scan(inputLengthsHost.begin(), inputLengthsHost.end(), inputOffsetsHost.begin() + 1); auto const totalInputSize = inputOffsetsHost.back(); std::vector inputsHost(totalInputSize); for (SizeType i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.begin() + inputLengthsHost[i], inputsHost.begin() + inputOffsetsHost[i]); } auto inputIds = mManager->copyFrom(inputsHost, ITensor::makeShape({1, totalInputSize}), MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(ITensor::makeShape({batchSize, beamWidth, maxSeqLength}), nvinfer1::DataType::kINT32); auto inputOffsets = std::shared_ptr(mManager->gpu(ITensor::makeShape({batchSize + 1}), nvinfer1::DataType::kINT32)); mManager->setZero(*inputOffsets); kernels::invokeInclusiveSum(*ITensor::slice(inputOffsets, 1), *inputLengths, *mManager, *mStream); auto inputOffsetsHost2 = mManager->copyFrom(*inputOffsets, MemoryType::kCPU); for (std::size_t b = 0; b < inputOffsetsHost.size(); ++b) { EXPECT_EQ(inputOffsetsHost[b], inputOffsetsHost[b]) << "Error at index " << b; } kernels::invokeCopyPackedInputToOutput(*outputIds, *inputIds, *inputOffsets, maxInputLength, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, MemoryType::kCPU); auto outputIdsHostData = bufferCast(*outputIdsHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } for (SizeType i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyInputToOutputTransposed) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; auto const beamWidth = 5; SizeType constexpr maxNewTokens{3}; auto const maxSeqLength = maxInputLength + maxNewTokens; SizeType constexpr padId{50256}; std::vector inputsHost(batchSize * maxInputLength); for (SizeType i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.end(), inputsHost.begin() + i * maxInputLength); } auto inputIds = mManager->copyFrom(inputsHost, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU); std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(ITensor::makeShape({maxSeqLength, batchSize, beamWidth}), nvinfer1::DataType::kINT32); kernels::invokeCopyInputToOutputTransposed(*outputIds, *inputIds, *inputLengths, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, MemoryType::kCPU); auto outputIdsHostData = bufferCast(*outputIdsHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << i << ')'; } for (SizeType i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyPackedInputToOutputTransposed) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; SizeType constexpr maxNewTokens{3}; auto const beamWidth = 5; auto const maxSeqLength = maxInputLength + maxNewTokens; SizeType constexpr padId{50256}; std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU); std::vector inputOffsetsHost(batchSize + 1); std::inclusive_scan(inputLengthsHost.begin(), inputLengthsHost.end(), inputOffsetsHost.begin() + 1); auto const totalInputSize = inputOffsetsHost.back(); std::vector inputsHost(totalInputSize); for (SizeType i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.begin() + inputLengthsHost[i], inputsHost.begin() + inputOffsetsHost[i]); } auto inputIds = mManager->copyFrom(inputsHost, ITensor::makeShape({1, totalInputSize}), MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(ITensor::makeShape({maxSeqLength, batchSize, beamWidth}), nvinfer1::DataType::kINT32); auto inputOffsets = std::shared_ptr(mManager->gpu(ITensor::makeShape({batchSize + 1}), nvinfer1::DataType::kINT32)); mManager->setZero(*inputOffsets); kernels::invokeInclusiveSum(*ITensor::slice(inputOffsets, 1), *inputLengths, *mManager, *mStream); auto inputOffsetsHost2 = mManager->copyFrom(*inputOffsets, MemoryType::kCPU); for (std::size_t b = 0; b < inputOffsetsHost.size(); ++b) { EXPECT_EQ(inputOffsetsHost[b], inputOffsetsHost[b]) << "Error at index " << b; } kernels::invokeCopyPackedInputToOutputTransposed( *outputIds, *inputIds, *inputOffsets, maxInputLength, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, MemoryType::kCPU); auto outputIdsHostData = bufferCast(*outputIdsHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } for (SizeType i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, ScatterInt32) { SizeType const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); mManager->setZero(*outputTensor); kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const expected = beam == 0 ? input[inputIdx] : 0; auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], expected) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, ScatterHalf) { SizeType const beamWidth{3}; std::vector const input{ 28524.f, 287.f, 5093.f, 12.f, 23316.f, 4881.f, 11.f, 30022.f, 263.f, 8776.f, 355.f, 257.f}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); mManager->setZero(*outputTensor); kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const expected = beam == 0 ? input[inputIdx] : half(0.f); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], expected) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TileInt32) { SizeType const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); kernels::tileTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], input[inputIdx]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TileHalf) { SizeType const beamWidth{3}; std::vector const input{ 28524.f, 287.f, 5093.f, 12.f, 23316.f, 4881.f, 11.f, 30022.f, 263.f, 8776.f, 355.f, 257.f}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); kernels::tileTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], input[inputIdx]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TileInplaceInt32) { SizeType const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); kernels::tileTensorInplace(*outputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], input[inputIdx]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TileInplaceHalf) { SizeType const beamWidth{3}; std::vector const input{ 28524.f, 287.f, 5093.f, 12.f, 23316.f, 4881.f, 11.f, 30022.f, 263.f, 8776.f, 355.f, 257.f}; SizeType const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = ITensor::makeShape({batchSize, inputLength}); auto const outputShape = ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); kernels::tileTensorInplace(*outputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, MemoryType::kCPU); auto outputPtr = bufferCast(*outputHost); for (SizeType b = 0; b < batchSize; ++b) { for (SizeType beam = 0; beam < beamWidth; ++beam) { for (SizeType i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], input[inputIdx]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } }