#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg from pathlib import Path import run from build_engines_utils import init_model_spec_module from mpi4py.MPI import COMM_WORLD init_model_spec_module() import os import model_spec import tensorrt_llm.bindings as _tb def generate_output(engine: str, num_beams: int, model_spec_obj: model_spec.ModelSpec, tp_size: int = 1, pp_size: int = 1, cp_size: int = 1, max_output_len: int = 8): model = 'llama-7b-hf' resources_dir = Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' hf_dir = models_dir / model tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str( cp_size) + '-gpu/' engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir data_dir = resources_dir / 'data' input_file = data_dir / 'input_tokens.npy' model_data_dir = data_dir / model if num_beams <= 1: output_dir = model_data_dir / 'sampling' else: output_dir = model_data_dir / ('beam_search_' + str(num_beams)) base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0] args = run.parse_arguments([ '--engine_dir', str(engine_dir), '--input_file', str(input_file), '--tokenizer_dir', str(hf_dir), '--output_npy', str(output_dir / (base_output_name + '.npy')), '--output_csv', str(output_dir / (base_output_name + '.csv')), '--max_output_len', str(max_output_len), '--num_beams', str(num_beams), '--use_py_session' ]) run.main(args) def generate_outputs(num_beams, only_multi_gpu=False): if not only_multi_gpu: tp_pp_cp_sizes = [(1, 1, 1)] elif COMM_WORLD.size == 4: tp_pp_cp_sizes = [(4, 1, 1), (2, 2, 1), (1, 4, 1)] elif COMM_WORLD.size == 2: tp_pp_cp_sizes = [(1, 2, 1), (2, 1, 1)] else: raise RuntimeError( f"The world size of MPI {COMM_WORLD.size} is not equal to 1, 2, or 4." ) model_spec_obj = model_spec.ModelSpec('input_tokens.npy', _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) model_spec_obj.use_packed_input() for tp_size, pp_size, cp_size in tp_pp_cp_sizes: print( f'Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size} and CP={cp_size}' ) model_spec_obj.use_tensor_parallelism(tp_size) model_spec_obj.use_pipeline_parallelism(pp_size) model_spec_obj.use_context_parallelism(cp_size) generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, tp_size=tp_size, pp_size=pp_size, cp_size=cp_size, model_spec_obj=model_spec_obj) if __name__ == '__main__': parser = _arg.ArgumentParser() parser.add_argument( "--only_multi_gpu", action="store_true", help="Generate data with Pipeline and Tensor Parallelism") args = parser.parse_args() generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu) generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu) print("Done")