/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/common/tensor.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/layers/baseLayer.h" #include "tensorrt_llm/layers/samplingParams.h" #include "tensorrt_llm/runtime/common.h" namespace tensorrt_llm { namespace layers { //! \brief Layer to randomly sample tokens from TopK logits. //! When both TopK and TopP are specified, layer jointly samples using TopK and TopP. //! When no TopK param is specified, sampling is skipped for particular request. template class TopKSamplingLayer : public BaseLayer { using Base = BaseLayer; public: TopKSamplingLayer(DecoderDomain const& decoderDomain, cudaStream_t stream, std::shared_ptr allocator); ~TopKSamplingLayer(); void setup(runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, runtime::SizeType32 const* batchSlots, std::shared_ptr setupParams) override; void forward(std::shared_ptr outputs, std::shared_ptr inputs) override; bool const* getSkipDecodeHost() const { return mSkipDecodeHost; } protected: bool mNormalizeLogProbs{true}; runtime::SizeType32 mRuntimeMaxTopK{0}; runtime::SizeType32* mRuntimeTopKDevice{nullptr}; float* mRuntimeTopPDevice{nullptr}; void* mSetupWorkspaceDevice{nullptr}; bool* mSkipDecodeDevice{nullptr}; bool* mSkipDecodeHost{nullptr}; using Base::mDecoderDomain; using Base::mWorkspaceSize; using Base::mAllocatedSize; using Base::mStream; using Base::mAllocator; private: void allocateBuffer(runtime::SizeType32 batchSize); void freeBuffer(); }; } // namespace layers } // namespace tensorrt_llm