/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/cudaEvent.h" #include "tensorrt_llm/runtime/gptDecoder.h" #include "tensorrt_llm/runtime/iStatefulGptDecoder.h" #include namespace tensorrt_llm::runtime { //! GPT decoder class with support for in-flight batching class StatefulGptDecoder : public IStatefulGptDecoder { public: StatefulGptDecoder(std::size_t vocabSize, std::size_t vocabSizePadded, CudaStreamPtr stream); //! Setup the decoder before calling `forward()` void setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, nvinfer1::DataType dtype, ModelConfig const& modelConfig, WorldConfig const& worldConfig) override; //! @brief Initialize the decoder with new batch of inputs. void newBatch(GenerationInput const& input, GenerationOutput const& output, SamplingConfig const& samplingConfig, ModelConfig const& modelConfig) override; void forwardAsync(decoder::Output& output, decoder::Input const& input) override; void forwardSync() override; //! @brief Gather final results for all requests. void finalize(SamplingConfig const& samplingConfig) const override; //! @param step index within tokens generated in one step //! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token //! ids without padding, on gpu [[nodiscard]] TensorPtr getIds() const override { return mDecodingOutput->ids; } // This implementation is here to satisfy the interface requirement. Returns ids instead [[nodiscard]] TensorPtr getGatheredIds() const override { return mDecodingOutput->ids; } //! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu [[nodiscard]] TensorPtr getCumLogProbs() const override { return mDecodingOutput->cumLogProbs; } //! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu [[nodiscard]] TensorPtr getLogProbs() const override { return mDecodingOutput->logProbs; } //! @brief Get tokens generated in one step of last forward pass //! @param iter The iteration within [0; maxTokensPerStep) for which to get the tokens //! @returns [batchSize, beamWidth], tokens generated in `iter` (per beam), on gpu [[nodiscard]] TensorPtr getNewTokens(SizeType32 iter = 0) const override { TLLM_CHECK(iter == 0); return mDecodingOutput->newTokens; } //! @returns [1], number of finished sequences, in pinned host memory [[nodiscard]] TensorPtr getNbFinished() const override { return mFinishedSum; } private: void reshapeBuffers(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 mMaxAttentionWindow, SizeType32 mSinkTokenLength, SizeType32 maxSequenceLength); private: std::size_t const mVocabSize; std::size_t const mVocabSizePadded; CudaStreamPtr mStream; BufferManager mBufferManager; using GptDecoderPtr = std::unique_ptr; GptDecoderPtr mDecoder; using DecodingInputPtr = std::unique_ptr; DecodingInputPtr mDecodingInput; using DecodingOutputPtr = std::unique_ptr; DecodingOutputPtr mDecodingOutput; CudaEvent mDecodedEvent{}; TensorPtr mFinishedSum; TensorPtr mSetupBatchSlots; SizeType32 mNbSteps; SizeType32 mMaxSequenceLength{}; SizeType32 mMaxAttentionWindow{}; SizeType32 mSinkTokenLength{}; }; } // namespace tensorrt_llm::runtime