/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/gptDecoderBatch.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/cudaEvent.h" #include "tensorrt_llm/runtime/runtimeKernels.h" #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; namespace tk = tensorrt_llm::kernels; namespace { SamplingConfig extractSamplingConfig(SamplingConfig const& batchSamplingConfig, SizeType32 batchIdx) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); SamplingConfig samplingConfig{batchSamplingConfig.beamWidth}; auto extractOptional = [&batchIdx](auto& single, auto const& batch) { using T = typename std::remove_reference_t::value_type; if (batch) { if (batch->size() > 1) single.emplace(T{batch->at(batchIdx)}); else single.emplace(T{batch->at(0)}); } }; extractOptional(samplingConfig.temperature, batchSamplingConfig.temperature); extractOptional(samplingConfig.minLength, batchSamplingConfig.minLength); extractOptional(samplingConfig.repetitionPenalty, batchSamplingConfig.repetitionPenalty); extractOptional(samplingConfig.presencePenalty, batchSamplingConfig.presencePenalty); extractOptional(samplingConfig.frequencyPenalty, batchSamplingConfig.frequencyPenalty); extractOptional(samplingConfig.noRepeatNgramSize, batchSamplingConfig.noRepeatNgramSize); // sampling layers extractOptional(samplingConfig.topK, batchSamplingConfig.topK); extractOptional(samplingConfig.topP, batchSamplingConfig.topP); extractOptional(samplingConfig.randomSeed, batchSamplingConfig.randomSeed); extractOptional(samplingConfig.topPDecay, batchSamplingConfig.topPDecay); extractOptional(samplingConfig.topPMin, batchSamplingConfig.topPMin); extractOptional(samplingConfig.topPResetIds, batchSamplingConfig.topPResetIds); // beam search layer samplingConfig.beamSearchDiversityRate = batchSamplingConfig.beamSearchDiversityRate; samplingConfig.lengthPenalty = batchSamplingConfig.lengthPenalty; samplingConfig.earlyStopping = batchSamplingConfig.earlyStopping; samplingConfig.normalizeLogProbs = batchSamplingConfig.normalizeLogProbs; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return samplingConfig; } } // namespace GptDecoderBatch::GptDecoderBatch(std::size_t vocabSize, std::size_t vocabSizePadded, GptDecoderBatch::CudaStreamPtr stream, SpeculativeDecodingMode const& speculativeDecodingMode) : mVocabSize{vocabSize} , mVocabSizePadded{vocabSizePadded} , mStream{std::move(stream)} , mBufferManager{mStream} , mSpeculativeDecodingMode{speculativeDecodingMode} { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto constexpr nvTokenIdType = TRTDataType::value; auto constexpr nvSizeType = TRTDataType::value; auto constexpr nvFloatType = TRTDataType::value; auto& dInput = mJointDecodingInput; auto dummyLogits = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); auto endIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dInput = std::make_unique(0, 0, 0, 0, std::move(dummyLogits), std::move(endIds)); dInput->sequenceLimitLength = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); dInput->lengths = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); auto& dOutput = mJointDecodingOutput; auto outputIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dOutput = std::make_unique(std::move(outputIds)); dOutput->newTokensSteps = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dOutput->parentIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); mFinishedSteps = mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType::value); mDraftProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mTargetProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mBatchSlotsSetup = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsDecoder = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsAcceptTokens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsAcceptLogits = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); // use batchSize many entries instead of the usual 1 dOutput->finishedSum = mBufferManager.emptyTensor(MemoryType::kPINNED, nvSizeType); mFinishedSum = BufferManager::pinned(ITensor::makeShape({1}), nvSizeType); // we don't need dOutput->lengths because lengths are passed from outside dOutput->cumLogProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); dOutput->logProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); dOutput->beamHypotheses.empty(mBufferManager); mNumDraftTokens = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); mCurandStates = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT8); mDraftTokenIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); mDraftLogits = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mTargetLogitsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->stopWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->stopWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->badWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->badWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->embeddingBias = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); if (!mSpeculativeDecodingMode.isNone()) { allocateSpeculativeDecodingBuffers(); } TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::allocateSpeculativeDecodingBuffers() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto constexpr nvSizeType = TRTDataType::value; auto& dInput = mJointDecodingInput; auto& dOutput = mJointDecodingOutput; if (mSpeculativeDecodingMode.isMedusa()) { DecodingInput::MedusaInputs medusaInputs; medusaInputs.medusaPaths = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); medusaInputs.medusaTreeIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); medusaInputs.medusaCurTokensPerStep = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); medusaInputs.medusaTargetTokensPerStep = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); dInput->medusaInputs = medusaInputs; } DecodingOutput::SpeculativeDecodingOutputs speculativeDecodingOutputs; if (mSpeculativeDecodingMode.predictsDraftTokens()) { speculativeDecodingOutputs.nextDraftTokens = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); if (mSpeculativeDecodingMode.variableDraftLength()) { speculativeDecodingOutputs.nextDraftTokensLen = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); speculativeDecodingOutputs.prevDraftTokensLen = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); } } if (mSpeculativeDecodingMode.needsKVCacheRewind()) { speculativeDecodingOutputs.acceptedTokensLen = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); speculativeDecodingOutputs.acceptedLengthsCumSum = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); speculativeDecodingOutputs.pathsOffsets = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); } dOutput->speculativeDecodingOutputs = speculativeDecodingOutputs; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::setupExplicitDraftTokens(ExplicitDraftTokensBuffers::Inputs explicitDraftTokensBuffers) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(mSpeculativeDecodingMode.isExplicitDraftTokens()); mJointDecodingOutput->explicitDraftTokensBuffers = std::move(explicitDraftTokensBuffers); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, SizeType32 maxTokensPerEngineStep, bool fusedDecoder, nvinfer1::DataType dtype, ModelConfig const& modelConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(maxBatchSize > 0); TLLM_CHECK(maxBeamWidth > 0); TLLM_CHECK(maxTokensPerEngineStep > 0); TLLM_CHECK(maxSequenceLength > 0); mActualBatchSize = maxBatchSize; mMaxSequenceLength = maxSequenceLength; mMaxAttentionWindow = maxAttentionWindow; mSinkTokenLength = sinkTokenLength; mMaxDecodingEngineTokens = maxTokensPerEngineStep; mFusedDecoder = fusedDecoder; mDecodingMode = mode; TLLM_CHECK_WITH_INFO((mMaxDecodingEngineTokens == 1 && mSpeculativeDecodingMode.isNone()) || (mMaxDecodingEngineTokens > 1 && !mSpeculativeDecodingMode.isNone()), "Max tokens per engine step must be equal to 1 when no speculative decoding is configured, " "or > 1 for any speculative decoding mode"); auto const maxBatchSizeShape = ITensor::makeShape({maxBatchSize}); auto const maxBatchSizeXmaxBeamWidth = ITensor::makeShape({maxBatchSize, maxBeamWidth}); auto const maxTokensPerStepXmaxBatchSizeXmaxBeamWidth = ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize, maxBeamWidth}); auto const maxBatchSizeXmaxTokensPerStep = ITensor::makeShape({maxBatchSize, maxTokensPerEngineStep}); auto& dInput = *mJointDecodingInput; dInput.maxLength = mMaxSequenceLength; dInput.maxAttentionWindow = mMaxAttentionWindow; dInput.sinkTokenLength = mSinkTokenLength; const_cast(*dInput.endIds).reshape(maxBatchSizeXmaxBeamWidth); auto& sequenceLimitLength = const_cast(*dInput.sequenceLimitLength); sequenceLimitLength.reshape(maxBatchSizeShape); kernels::invokeFill(sequenceLimitLength, mMaxSequenceLength, *mStream); auto& inputLengths = const_cast(*dInput.lengths); inputLengths.reshape(maxBatchSizeXmaxBeamWidth); mBufferManager.setZero(inputLengths); auto const jointOutputIdsShape = ITensor::makeShape({maxBatchSize, maxBeamWidth, maxSequenceLength}); auto& dOutput = *mJointDecodingOutput; dOutput.ids->reshape(jointOutputIdsShape); mBufferManager.setZero(*dOutput.newTokensSteps); mFinishedSteps->reshape(maxTokensPerStepXmaxBatchSizeXmaxBeamWidth); mBufferManager.setZero(*mFinishedSteps); if (mFusedDecoder) { mBatchSlotsSetup->reshape(ITensor::makeShape({maxBatchSize})); mBatchSlotsDecoder->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize})); mBatchSlotsAcceptTokens->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize})); mBatchSlotsAcceptLogits->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize})); } if (mSpeculativeDecodingMode.isDraftTokensExternal()) { mDraftProbs->reshape(ITensor::makeShape( {maxBatchSize, maxTokensPerEngineStep, maxBeamWidth, static_cast(mVocabSizePadded)})); mTargetProbs->reshape(ITensor::makeShape( {maxBatchSize, maxTokensPerEngineStep, maxBeamWidth, static_cast(mVocabSizePadded)})); } dOutput.parentIds->reshape(jointOutputIdsShape); // use batchSize many entries instead of the usual 1 dOutput.finishedSum->reshape(maxBatchSizeShape); mBufferManager.setZero(*dOutput.finishedSum); dOutput.newTokensSteps->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize, maxBeamWidth})); dOutput.cumLogProbs->reshape(maxBatchSizeXmaxBeamWidth); mBufferManager.setZero(*dOutput.cumLogProbs); dOutput.logProbs->reshape(ITensor::makeShape({maxBatchSize, maxBeamWidth, mMaxSequenceLength})); mBufferManager.setZero(*dOutput.logProbs); if (maxBeamWidth > 1) { dOutput.beamHypotheses.reshape(maxBatchSize, maxBeamWidth, mMaxSequenceLength); } else { dOutput.beamHypotheses.release(); } // speculative decoding only works for beam width == 1 mDraftTokenIds->reshape(maxBatchSizeXmaxTokensPerStep); mDraftLogits->reshape( ITensor::makeShape({maxBatchSize, maxTokensPerEngineStep, static_cast(mVocabSizePadded)})); mAcceptByLogits.resize(maxBatchSize); mNumDraftTokens->reshape(ITensor::makeShape({maxBatchSize, 1})); mCurandStates->reshape(ITensor::makeShape({maxBatchSize, sizeof(curandState_t)})); mTargetLogitsPtrs->reshape(ITensor::makeShape({maxTokensPerEngineStep, maxBatchSize})); const_cast(*dInput.embeddingBias) .reshape(ITensor::makeShape({maxBatchSize, static_cast(mVocabSizePadded)})); const_cast(*dInput.badWordsPtrs).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.badWordsLens).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.stopWordsPtrs).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.stopWordsLens).reshape(ITensor::makeShape({maxBatchSize})); std::shared_ptr speculativeDecodingModulePtr = nullptr; if (mSpeculativeDecodingMode.predictsDraftTokens()) { speculativeDecodingModulePtr = modelConfig.getSpeculativeDecodingModulePtr(); setupSpeculativeDecoding(modelConfig); } else { mMaxDecodingDecoderTokens = 1; } auto const numOfDecoders = mFusedDecoder ? 1 : maxBatchSize; auto const maxBatchSizePerDecoder = mFusedDecoder ? maxBatchSize : 1; auto const device = mStream->getDevice(); mStreams.resize(numOfDecoders); mDecoders.resize(numOfDecoders); for (SizeType32 i = 0; i < numOfDecoders; ++i) { mStreams[i] = std::make_shared(); TLLM_CHECK(mStreams[i]->getDevice() == device); mDecoders[i] = IGptDecoder::create(mode, dtype, maxBatchSizePerDecoder, maxBeamWidth, mVocabSize, mVocabSizePadded, mMaxSequenceLength, mStreams[i], speculativeDecodingModulePtr); } mNbSteps.clear(); mNbSteps.resize(maxBatchSize, 0); mFinished.clear(); mFinished.resize(maxBatchSize, true); mMaxNewTokens.clear(); mMaxNewTokens.resize(maxBatchSize, 0); mBeamWidths.clear(); mBeamWidths.resize(maxBatchSize, 0); mNumDecodingEngineTokens.clear(); mNumDecodingEngineTokens.resize(maxBatchSize, 0); mDecodingInputs.resize(maxBatchSize); mDecodingOutputs.resize(maxBatchSize); for (SizeType32 i = 0; i < maxBatchSize; ++i) { mDecodingInputs[i].reset(); mDecodingOutputs[i].reset(); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::setupSpeculativeDecoding(ModelConfig const& modelConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto& dInput = *mJointDecodingInput; auto& dOutput = *mJointDecodingOutput; auto const speculativeDecodingModule = modelConfig.getSpeculativeDecodingModulePtr(); if (mSpeculativeDecodingMode.isMedusa()) { auto& medusaPaths = const_cast(*dInput.medusaInputs->medusaPaths); medusaPaths.reshape(ITensor::makeShape({mActualBatchSize, speculativeDecodingModule->getMaxDecodingTokens(), speculativeDecodingModule->getMaxPathLen()})); mBufferManager.setMem(medusaPaths, -1); auto& medusaTreeIds = const_cast(*dInput.medusaInputs->medusaTreeIds); medusaTreeIds.reshape( ITensor::makeShape({mActualBatchSize, speculativeDecodingModule->getMaxDecodingDraftTokens()})); mBufferManager.setZero(medusaTreeIds); auto& curTokensPerStep = const_cast(*dInput.medusaInputs->medusaCurTokensPerStep); auto& targetTokensPerStep = const_cast(*dInput.medusaInputs->medusaTargetTokensPerStep); curTokensPerStep.reshape(ITensor::makeShape({mActualBatchSize})); targetTokensPerStep.reshape(ITensor::makeShape({mActualBatchSize})); mBufferManager.setZero(curTokensPerStep); mBufferManager.setZero(targetTokensPerStep); } if (mSpeculativeDecodingMode.predictsDraftTokens()) { dOutput.speculativeDecodingOutputs->nextDraftTokens->reshape( ITensor::makeShape({mActualBatchSize, mMaxDecodingEngineTokens - 1})); if (mSpeculativeDecodingMode.variableDraftLength()) { dOutput.speculativeDecodingOutputs->nextDraftTokensLen->reshape(ITensor::makeShape({mActualBatchSize})); dOutput.speculativeDecodingOutputs->prevDraftTokensLen->reshape(ITensor::makeShape({mActualBatchSize})); } } if (mSpeculativeDecodingMode.needsKVCacheRewind()) { dOutput.speculativeDecodingOutputs->acceptedTokensLen->reshape(ITensor::makeShape({mActualBatchSize})); dOutput.speculativeDecodingOutputs->acceptedLengthsCumSum->reshape(ITensor::makeShape({mActualBatchSize + 1})); dOutput.speculativeDecodingOutputs->pathsOffsets->reshape( ITensor::makeShape({mActualBatchSize * speculativeDecodingModule->getMaxDraftPathLen()})); } mMaxDecodingDecoderTokens = mMaxDecodingEngineTokens; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequest( SizeType32 batchSlot, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(batchSlot >= 0); auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const batchSize = jointOutputIdsShape.d[0]; TLLM_CHECK(0 <= batchSize && batchSlot < batchSize); auto const maxBeamWidth = jointOutputIdsShape.d[1]; auto const beamWidth = samplingConfig.beamWidth; TLLM_CHECK_WITH_INFO(beamWidth <= maxBeamWidth, tc::fmtstr("Beam width (%d) must be smaller than maxBeamWidth (" FMT_DIM ") passed to decoder setup function.", beamWidth, maxBeamWidth)); auto const& requestIds = request.ids; auto const inputLength = request.inputLen; auto const numDecodingEngineTokens = request.generatedTokensPerEngineStep; auto const numDecodingDraftEngineTokens = numDecodingEngineTokens - 1; auto const maxNewTokens = request.maxNewTokens.value_or(mMaxSequenceLength - inputLength - numDecodingDraftEngineTokens); TLLM_CHECK_WITH_INFO(inputLength + maxNewTokens + numDecodingDraftEngineTokens <= mMaxSequenceLength, tc::fmtstr( "Input length (%d) + max new tokens (%d) + draft tokens (%d) must be less than max sequence length (%d).", inputLength, maxNewTokens, numDecodingDraftEngineTokens, mMaxSequenceLength)); TLLM_CHECK(requestIds->getDataType() == TRTDataType::value); auto const endId = request.endId.value_or(-1); auto constexpr localBatchSize = 1; auto const decoderIdx = mFusedDecoder ? 0 : batchSlot; auto const& stream = mStreams.at(decoderIdx); BufferManager manager{stream}; // input auto& dJointInput = *mJointDecodingInput; auto& dInput = mDecodingInputs.at(batchSlot); TensorPtr endIdTensorPtr{ITensor::slice(constPointerCast(dJointInput.endIds), batchSlot, localBatchSize)}; kernels::invokeFill(*endIdTensorPtr, endId, *stream); dInput = std::make_unique( inputLength, mMaxAttentionWindow, mSinkTokenLength, localBatchSize, dJointInput.logits, endIdTensorPtr); TensorPtr embeddingBiasSlice = ITensor::slice(constPointerCast(dJointInput.embeddingBias), batchSlot, localBatchSize); if (request.embeddingBias) { TLLM_CHECK(request.embeddingBias->getShape().nbDims == 2); TLLM_CHECK(request.embeddingBias->getShape().d[0] == 1); TLLM_CHECK_WITH_INFO(request.embeddingBias->getShape().d[1] == static_cast(mVocabSize), "The embedding bias shape is not as expected. Expected last dimension to be same as vocab size: %lu.", mVocabSize); manager.copy(*request.embeddingBias, *embeddingBiasSlice); dInput->embeddingBias = embeddingBiasSlice; } else { manager.setZero(*embeddingBiasSlice); } auto setupWords = [fusedDecoder = mFusedDecoder](SharedConstPtr& inputWordsList, TensorPtr const& requestWordsList, SharedConstPtr& jointWordsPtrs, SharedConstPtr& jointWordsLens, SharedConstPtr& wordsPtrs, SharedConstPtr& wordsLens, SizeType32& inputMaxStopWordsLen, SizeType32& maxWordsLen, SizeType32 localBatchSize, SizeType32 batchSlot) { if (requestWordsList) { auto const wordsLen = requestWordsList->getShape().d[1]; BufferRange(*constPointerCast(jointWordsPtrs))[batchSlot] = bufferCast(*requestWordsList); bufferCast(*constPointerCast(jointWordsLens))[batchSlot] = wordsLen; // FIXME(nkorobov): this is monotonically growing size maxWordsLen = std::max(static_cast(wordsLen), maxWordsLen); if (!fusedDecoder) { wordsPtrs = ITensor::slice(jointWordsPtrs, batchSlot, localBatchSize); wordsLens = ITensor::slice(jointWordsLens, batchSlot, localBatchSize); inputMaxStopWordsLen = wordsLen; } // NOTE(nkorobov): dInput->WordsList is not used in gptDecoder, but required to keep WordsList's // memory allocated inputWordsList = requestWordsList; } else { bufferCast(*constPointerCast(jointWordsLens))[batchSlot] = 0; inputMaxStopWordsLen = 0; } }; setupWords(dInput->stopWordsList, request.stopWordsList, dJointInput.stopWordsPtrs, dJointInput.stopWordsLens, dInput->stopWordsPtrs, dInput->stopWordsLens, dInput->maxStopWordsLen, mMaxStopWordsLen, localBatchSize, batchSlot); dJointInput.maxStopWordsLen = mMaxStopWordsLen; setupWords(dInput->badWordsList, request.badWordsList, dJointInput.badWordsPtrs, dJointInput.badWordsLens, dInput->badWordsPtrs, dInput->badWordsLens, dInput->maxBadWordsLen, mMaxBadWordsLen, localBatchSize, batchSlot); dJointInput.maxBadWordsLen = mMaxBadWordsLen; TensorPtr sequenceLimitLength{ ITensor::slice(constPointerCast(dJointInput.sequenceLimitLength), batchSlot, localBatchSize)}; kernels::invokeFill(*sequenceLimitLength, inputLength + maxNewTokens, *stream); dInput->sequenceLimitLength = std::move(sequenceLimitLength); TensorPtr inputLengths{ITensor::slice(constPointerCast(dJointInput.lengths), batchSlot, localBatchSize)}; kernels::invokeFill(*inputLengths, inputLength, *stream); dInput->lengths = inputLengths; // output auto& dJointOutput = *mJointDecodingOutput; auto& dOutput = mDecodingOutputs.at(batchSlot); auto const outputIdsShape = ITensor::makeShape({localBatchSize, beamWidth, mMaxSequenceLength}); TensorPtr outputIds = ITensor::slice(dJointOutput.ids, batchSlot, localBatchSize); outputIds->reshape(outputIdsShape); dOutput = std::make_unique(outputIds); dOutput->finishedSum = ITensor::slice(dJointOutput.finishedSum, batchSlot, localBatchSize); manager.setZero(*dOutput->finishedSum); dOutput->newTokensVec.resize(mMaxDecodingEngineTokens); for (SizeType32 ti = 0; ti < mMaxDecodingEngineTokens; ++ti) { TensorPtr newTokensStepView = ITensor::slice(dJointOutput.newTokensSteps, ti, 1); newTokensStepView->squeeze(0); dOutput->newTokensVec[ti] = ITensor::slice(newTokensStepView, batchSlot, localBatchSize); manager.setZero(*dOutput->newTokensVec[ti]); } // FIXME(nkorobov): we call setZero mMaxDecodingEngineTokens times for only 1 element for (SizeType32 ti = 0; ti < mMaxDecodingEngineTokens; ++ti) { TensorPtr finishedStepsView = ITensor::slice(mFinishedSteps, ti, 1); finishedStepsView->squeeze(0); TensorPtr finishedSteps = ITensor::slice(finishedStepsView, batchSlot, localBatchSize); manager.setZero(*finishedSteps); } // cumLogProb is mandatory for beamWidth > 1 dOutput->cumLogProbs = nullptr; if ((samplingConfig.cumLogProbs.has_value() && samplingConfig.cumLogProbs->at(0)) || beamWidth > 1) { dOutput->cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchSlot, localBatchSize); manager.setZero(*dOutput->cumLogProbs); } dOutput->logProbs = nullptr; if (samplingConfig.outputLogProbs.has_value() && samplingConfig.outputLogProbs->at(0)) { dOutput->logProbs = ITensor::slice(dJointOutput.logProbs, batchSlot, localBatchSize); manager.setZero(*dOutput->logProbs); } if (beamWidth > 1) { kernels::invokeFill( *IBuffer::slice(dOutput->cumLogProbs, 1, beamWidth - 1), DecodingOutput::kNegativeInfinity, *stream); dOutput->parentIds = ITensor::slice(dJointOutput.parentIds, batchSlot, localBatchSize); dOutput->parentIds->reshape(outputIdsShape); manager.setZero(*dOutput->parentIds); dOutput->beamHypotheses = dJointOutput.beamHypotheses.slice(batchSlot, localBatchSize); dOutput->beamHypotheses.init(manager, endId); } // Speculative execution if (numDecodingEngineTokens > 1) { TLLM_CHECK(beamWidth == 1); newRequestSpeculativeDecoding(batchSlot, request, samplingConfig); } // remaining if (!mFusedDecoder) { mDecoders[decoderIdx]->setup(samplingConfig, localBatchSize); } mBeamWidths[batchSlot] = beamWidth; mNbSteps[batchSlot] = 0; mFinished[batchSlot] = false; mMaxNewTokens[batchSlot] = maxNewTokens; mNumDecodingEngineTokens[batchSlot] = numDecodingEngineTokens; // copy the request ids into outputIds auto const requestIdsShape = requestIds->getShape(); auto inputIdsView = ITensor::view(requestIds, ITensor::makeShape({localBatchSize, requestIdsShape.d[0]})); auto outputIdsView = ITensor::view(outputIds, ITensor::makeShape({beamWidth, mMaxSequenceLength})); kernels::invokeFill(*outputIdsView, endId, *stream); kernels::tileTensor(*outputIdsView, *inputIdsView, beamWidth, *stream); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequestSpeculativeDecoding( SizeType32 batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); mAcceptByLogits[batchIdx] = false; if (mSpeculativeDecodingMode.predictsDraftTokens()) { auto constexpr decoderIdx = 0; auto const& stream = mStreams.at(decoderIdx); BufferManager manager{stream}; auto& dJointOutput = *mJointDecodingOutput; auto constexpr localBatchSize = 1; TensorPtr nextDraftTokens = ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokens, batchIdx, localBatchSize); // FIXME(nkorobov): can we skip this? manager.setZero(*nextDraftTokens); if (mSpeculativeDecodingMode.variableDraftLength()) { TensorPtr nextDraftTokensLen = ITensor::slice(dJointOutput.speculativeDecodingOutputs->nextDraftTokensLen, batchIdx, localBatchSize); manager.setZero(*nextDraftTokensLen); } } if (mSpeculativeDecodingMode.isDraftTokensExternal()) { newRequestDraftTokensExternal(batchIdx, request, samplingConfig); } else if (mSpeculativeDecodingMode.isMedusa()) { newRequestMedusa(batchIdx, request); } else if (mSpeculativeDecodingMode.isLookaheadDecoding()) { newRequestLookahead(batchIdx, request); } else if (mSpeculativeDecodingMode.isExplicitDraftTokens()) { newRequestExplicitDraftTokens(batchIdx, request); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequestDraftTokensExternal( SizeType32 batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK_WITH_INFO(mFusedDecoder, "Speculative decoding requires fused decoder"); auto constexpr decoderIdx = 0; auto const& stream = mStreams.at(decoderIdx); BufferManager manager{stream}; auto constexpr localBatchSize = 1; auto const numDraftTokens = request.generatedTokensPerEngineStep - 1; if (request.draftLogits.has_value()) { TensorPtr draftLogitsView = ITensor::view(request.draftLogits.value()); mAcceptByLogits[batchIdx] = true; TensorPtr draftLogitsReqBatchSlice = ITensor::slice(mDraftLogits, batchIdx, localBatchSize); draftLogitsReqBatchSlice->squeeze(0); TensorPtr draftLogitsReqTokensSlice = ITensor::slice(draftLogitsReqBatchSlice, 0, numDraftTokens); manager.copy(*draftLogitsView, *draftLogitsReqTokensSlice); } TensorPtr draftTokensReqBatchSlice = ITensor::slice(mDraftTokenIds, batchIdx, localBatchSize); draftTokensReqBatchSlice->squeeze(0); TensorPtr draftTokensReqTokensSlice = ITensor::slice(draftTokensReqBatchSlice, 0, numDraftTokens); TensorPtr draftTokensView = ITensor::view(request.draftTokens, ITensor::makeShape({numDraftTokens})); manager.copy(*draftTokensView, *draftTokensReqTokensSlice); auto const curandStatesView = ITensor::slice(mCurandStates, batchIdx, localBatchSize); auto curandState = reinterpret_cast(bufferCast(*curandStatesView)); if (samplingConfig.randomSeed.has_value()) { tk::invokeCurandInitialize( curandState, nullptr, localBatchSize, samplingConfig.randomSeed.value()[0], stream->get()); } else { tk::invokeCurandInitialize(curandState, nullptr, localBatchSize, 0, stream->get()); } auto numDraftTokensView = ITensor::slice(mNumDraftTokens, batchIdx, localBatchSize); kernels::invokeFill(*numDraftTokensView, numDraftTokens, *stream); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequestMedusa(SizeType32 batchIdx, decoder_batch::Request const& request) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK_WITH_INFO(mFusedDecoder, "Medusa requires fused decoder"); auto constexpr decoderIdx = 0; auto const& stream = mStreams.at(decoderIdx); BufferManager manager{stream}; auto& dJointInput = *mJointDecodingInput; auto constexpr localBatchSize = 1; TensorPtr curTokensPerStepSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaCurTokensPerStep), batchIdx, localBatchSize); // Context phase Medusa processes 1 token only, new value from targetTokensPerStep will be filled at the end // of first decoder kernels::invokeFill(*curTokensPerStepSlice, 1, *stream); TensorPtr targetTokensPerStepSlice = ITensor::slice( constPointerCast(dJointInput.medusaInputs->medusaTargetTokensPerStep), batchIdx, localBatchSize); auto const generatedTokensPerEngineStep = request.generatedTokensPerEngineStep; TLLM_CHECK_WITH_INFO(generatedTokensPerEngineStep <= mMaxDecodingEngineTokens, "Tokens per step for (%d) is larger than maximum tokens per step (%d)", generatedTokensPerEngineStep, mMaxDecodingEngineTokens); kernels::invokeFill(*targetTokensPerStepSlice, generatedTokensPerEngineStep, *stream); TensorPtr pathsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaPaths), batchIdx, localBatchSize); manager.copy(*request.medusaPaths, *pathsSlice); TensorPtr treeIdsSlice = ITensor::slice(constPointerCast(dJointInput.medusaInputs->medusaTreeIds), batchIdx, localBatchSize); manager.copy(*request.medusaTreeIds, *treeIdsSlice); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequestLookahead(SizeType32 batchIdx, decoder_batch::Request const& request) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK_WITH_INFO(mFusedDecoder, "Lookahead decoding requires fused decoder"); // TODO(nkorobov) add lookahead layer TLLM_LOG_WARNING("Lookahead decoding is not supported yet."); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequestExplicitDraftTokens(SizeType32 batchIdx, decoder_batch::Request const& request) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK_WITH_INFO(mFusedDecoder, "Explicit draft tokens decoding requires fused decoder"); TLLM_CHECK(mJointDecodingOutput->explicitDraftTokensBuffers); auto constexpr localBatchSize = 1; auto& stream = mStream; TensorPtr positionIdsBaseSlice = ITensor::slice(mJointDecodingOutput->explicitDraftTokensBuffers->positionIdsBase, batchIdx, localBatchSize); kernels::invokeFill(*positionIdsBaseSlice, request.inputLen, *stream); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::setExplicitDraftTokensInputs(decoder_batch::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto explicitDraftTokensInputs = DecodingInput::ExplicitDraftTokensInputs(); TLLM_CHECK(input.explicitDraftTokensInputs.has_value()); TLLM_CHECK(input.explicitDraftTokensLastInputs.has_value()); explicitDraftTokensInputs.nextDraftTokens = input.explicitDraftTokensInputs->nextDraftTokens; explicitDraftTokensInputs.nextFlatTokens = input.explicitDraftTokensInputs->nextFlatTokens; explicitDraftTokensInputs.nextDraftIndices = input.explicitDraftTokensInputs->nextDraftIndices; explicitDraftTokensInputs.nextDraftProbs = input.explicitDraftTokensInputs->nextDraftProbs; explicitDraftTokensInputs.lastDraftTokens = input.explicitDraftTokensLastInputs->draftTokens; explicitDraftTokensInputs.lastDraftIndices = input.explicitDraftTokensLastInputs->draftIndices; explicitDraftTokensInputs.lastPositionIdsBase = input.explicitDraftTokensLastInputs->positionIdsBase; explicitDraftTokensInputs.masks = input.explicitDraftTokensInputs->masks; explicitDraftTokensInputs.packedPositionIds = input.explicitDraftTokensInputs->packedPositionIds; explicitDraftTokensInputs.bestPathLengths = input.explicitDraftTokensInputs->bestPathLengths; explicitDraftTokensInputs.bestPathIndices = input.explicitDraftTokensInputs->bestPathIndices; explicitDraftTokensInputs.nextGenerationLengths = input.explicitDraftTokensInputs->nextGenerationLengths; explicitDraftTokensInputs.lastGenerationLengths = input.explicitDraftTokensLastInputs->generationLengths; explicitDraftTokensInputs.maxGenLengthDevice = input.explicitDraftTokensInputs->maxGenToken; explicitDraftTokensInputs.seqSlots = input.seqSlots; mJointDecodingInput->explicitDraftTokensInputs = explicitDraftTokensInputs; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequests(std::vector const& seqSlots, std::vector const& requests, std::vector const& samplingConfigs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto batchSlotsPtr = bufferCast(*mBatchSlotsSetup); SizeType32 const localBatchSize = seqSlots.size(); for (SizeType32 bi = 0; bi < localBatchSize; ++bi) { newRequest(seqSlots[bi], requests[bi], samplingConfigs[bi]); if (mFusedDecoder) { batchSlotsPtr[bi] = seqSlots[bi]; } } if (mFusedDecoder) { TensorPtr batchSlotsView = ITensor::slice(mBatchSlotsSetup, 0, localBatchSize); auto fusedSamplingConfig = SamplingConfig(samplingConfigs); mDecoders[0]->setup( fusedSamplingConfig, localBatchSize, bufferCast(*batchSlotsView), {*mJointDecodingOutput}); auto const& stream = mStreams.at(0); CudaEvent event{}; stream->record(event); mStream->wait(event); } else { for (SizeType32 bi = 0; bi < localBatchSize; ++bi) { auto const& stream = mStreams.at(bi); CudaEvent event{}; stream->record(event); mStream->wait(event); } } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardDispatch( decoder_batch::Output& output, decoder_batch::Input const& input, ForwardType forwardType) { auto const maxDecodingEngineTokens = *std::max_element(std::begin(mNumDecodingEngineTokens), std::end(mNumDecodingEngineTokens)); for (SizeType32 si = 0; si < maxDecodingEngineTokens; si += mMaxDecodingDecoderTokens) { if (!mFusedDecoder) { TLLM_CHECK_WITH_INFO(forwardType == ForwardType::kASYNC, "Unfused decoder supports only async forward"); forwardUnfusedDecoder(si, output, input, forwardType); } else { forwardFusedDecoder(si, output, input, forwardType); } } } GptDecoderBatch::TokenPtr GptDecoderBatch::forwardAsync( decoder_batch::Output& output, decoder_batch::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); forwardDispatch(output, input, ForwardType::kASYNC); CudaEvent eventStop{}; mStream->record(eventStop); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return std::make_unique(std::move(eventStop), input.active); } void GptDecoderBatch::forwardUnfusedDecoder( SizeType32 step, decoder_batch::Output& output, decoder_batch::Input const& input, ForwardType forwardType) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto eventStart = CudaEvent{}; mStream->record(eventStart); auto& allTargetLogits = input.logits; auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const maxBeamWidth = jointOutputIdsShape.d[1]; auto& srcCacheIndirection = input.cacheIndirection; auto& tgtCacheIndirection = output.cacheIndirection; TLLM_CHECK_WITH_INFO((srcCacheIndirection && tgtCacheIndirection) || (!srcCacheIndirection && !tgtCacheIndirection), "Specify both srcCacheIndirection and tgtCacheIndirection or neither."); TLLM_CHECK(!srcCacheIndirection || srcCacheIndirection->getDataType() == TRTDataType::value); TLLM_CHECK(!tgtCacheIndirection || tgtCacheIndirection->getDataType() == TRTDataType::value); TLLM_CHECK(static_cast(output.sequenceLengths->getSize()) == mActualBatchSize * maxBeamWidth); // TODO should remove this reshape and set shape to [batch_size, beam_width] outside TensorPtr sequenceLengths = ITensor::view(output.sequenceLengths, ITensor::makeShape({mActualBatchSize, maxBeamWidth})); TLLM_CHECK(sequenceLengths); bool const async = forwardType == ForwardType::kASYNC; auto constexpr singleRequest = 1; for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi]) { continue; } auto const& stream = mStreams.at(bi); if (async) { stream->wait(eventStart); } auto& targetLogits = allTargetLogits[bi]; auto& dInput = *mDecodingInputs[bi]; auto& dOutput = *mDecodingOutputs[bi]; auto& decoder = *mDecoders[bi]; TensorPtr finishedStepsInput = ITensor::slice(mFinishedSteps, step, 1); TensorPtr finishedStepsOutput = ITensor::slice(mFinishedSteps, std::min(step + 1, mNumDecodingEngineTokens[bi] - 1), 1); finishedStepsInput->squeeze(0); finishedStepsOutput->squeeze(0); if (srcCacheIndirection && tgtCacheIndirection) { auto srcView = std::shared_ptr(ITensor::slice(srcCacheIndirection, bi, singleRequest)); auto tgtView = std::shared_ptr(ITensor::slice(tgtCacheIndirection, bi, singleRequest)); dInput.cacheIndirection = ITensor::view( srcView, ITensor::makeShape({singleRequest, mBeamWidths[bi], srcView->getShape().d[2]})); dOutput.cacheIndirection = ITensor::view( tgtView, ITensor::makeShape({singleRequest, mBeamWidths[bi], tgtView->getShape().d[2]})); } auto sequenceLengthsView = std::shared_ptr(ITensor::slice(sequenceLengths, bi, singleRequest)); dOutput.lengths = ITensor::view(sequenceLengthsView, ITensor::makeShape({singleRequest, mBeamWidths[bi]})); { dInput.logits = ITensor::slice(targetLogits, step, singleRequest); dOutput.newTokens = ITensor::view(dOutput.newTokensVec[step]); dInput.finished = ITensor::slice(finishedStepsInput, bi, singleRequest); dOutput.finished = ITensor::slice(finishedStepsOutput, bi, singleRequest); if (async) { decoder.forwardAsync(dOutput, dInput); } else { decoder.forwardSync(dOutput, dInput); } mNbSteps[bi] += 1; mFinished[bi] = mNbSteps[bi] >= mMaxNewTokens[bi]; dInput.step += 1; } if (async) { if (step == mNumDecodingEngineTokens[bi] - 1) { auto const& stream = mStreams.at(bi); CudaEvent event{}; stream->record(event); mStream->wait(event); } } } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardFusedDecoder( SizeType32 step, decoder_batch::Output& output, decoder_batch::Input const& input, ForwardType forwardType) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto eventStart = CudaEvent{}; mStream->record(eventStart); auto& allTargetLogits = input.logits; auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const maxBeamWidth = jointOutputIdsShape.d[1]; auto constexpr singleRequest = 1; TLLM_CHECK(static_cast(output.sequenceLengths->getSize()) == mActualBatchSize * maxBeamWidth); // TODO should remove this reshape and set shape to [batch_size, beam_width] outside TensorPtr sequenceLengths = ITensor::view(output.sequenceLengths, ITensor::makeShape({mActualBatchSize, maxBeamWidth})); TLLM_CHECK(sequenceLengths); auto batchSlotsDecoderPtr = input.seqSlots ? bufferCast(*input.seqSlots) : bufferCast(*mBatchSlotsDecoder); auto batchSlotsAcceptTokensPtr = bufferCast(*mBatchSlotsAcceptTokens); auto batchSlotsAcceptLogitsPtr = bufferCast(*mBatchSlotsAcceptLogits); auto& dInput = *mJointDecodingInput; auto& dOutput = *mJointDecodingOutput; auto& decoder = *mDecoders[0]; auto const& stream = mStreams.at(0); if (maxBeamWidth > 1) { dInput.cacheIndirection = input.cacheIndirection; dOutput.cacheIndirection = output.cacheIndirection; } if (mSpeculativeDecodingMode.isExplicitDraftTokens()) { setExplicitDraftTokensInputs(input); } bool const async = forwardType == ForwardType::kASYNC; if (async) { stream->wait(eventStart.get()); } SizeType32 localBatchDecoderIdx = 0; SizeType32 localBatchAcceptTokensIdx = 0; SizeType32 localBatchAcceptLogitsIdx = 0; for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi]) { continue; } if (mFusedDecoder) { if (!mAcceptByLogits[bi] && mMaxDecodingDecoderTokens == 1 && mNumDecodingEngineTokens[bi] > 1 && step == mNumDecodingEngineTokens[bi] - 1) { batchSlotsAcceptTokensPtr[step * mActualBatchSize + localBatchAcceptTokensIdx] = bi; localBatchAcceptTokensIdx++; } else if (mAcceptByLogits[bi] && mMaxDecodingDecoderTokens == 1 && mNumDecodingEngineTokens[bi] > 1 && step == 0) { batchSlotsAcceptLogitsPtr[step * mActualBatchSize + localBatchAcceptLogitsIdx] = bi; localBatchAcceptLogitsIdx++; } batchSlotsDecoderPtr[step * mActualBatchSize + localBatchDecoderIdx] = bi; localBatchDecoderIdx++; } } auto const maxDecodingEngineTokens = *std::max_element(std::begin(mNumDecodingEngineTokens), std::end(mNumDecodingEngineTokens)); std::vector logitsVec; auto targetLogitsPtrsSlice = ITensor::slice(mTargetLogitsPtrs, step, 1); auto targetLogitsPtrsSlicePtr = reinterpret_cast(bufferCast(*targetLogitsPtrsSlice)); SizeType32 targetLogitsIdx = 0; for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi]) { continue; } auto& targetLogits = allTargetLogits[bi]; SharedConstPtr logitsSlice = ITensor::slice(targetLogits, step, singleRequest); logitsVec.push_back(logitsSlice); targetLogitsPtrsSlicePtr[targetLogitsIdx++] = logitsSlice->data(); } if (async && localBatchAcceptLogitsIdx > 0) { // These params are only used for testing. Thus, can be per batch instead of per request auto const& samplingConfig = decoder.getSamplingConfig(); bool const useRandomAcceptanceThreshold = !samplingConfig.draftAcceptanceThreshold.has_value(); float const randomAcceptanceThreshold = useRandomAcceptanceThreshold ? 0 : samplingConfig.draftAcceptanceThreshold.value()[0]; TensorPtr batchSlotsAcceptLogitsStepSlice = ITensor::slice(mBatchSlotsAcceptLogits, step, 1); batchSlotsAcceptLogitsStepSlice->squeeze(0); TensorPtr batchSlotsAcceptLogitsSlice = ITensor::slice(batchSlotsAcceptLogitsStepSlice, 0, localBatchAcceptLogitsIdx); IGptDecoder::acceptDraftTokensByLogits( /* [maxBatchSize, maxDecodingTokens, vocabPadded] */ *mDraftLogits, /* [maxBatchSize][maxDecodingTokens, vocabPadded] */ *targetLogitsPtrsSlice, /* [maxBatchSize, maxDecodingTokens, vocabPadded] */ *mDraftProbs, /* [maxBatchSize, maxDecodingTokens, vocabPadded] */ *mTargetProbs, /* [maxBatchSize] */ *mNumDraftTokens, /* [maxDecodingTokens, maxBatchSize] */ *mFinishedSteps, /* [bs] */ *batchSlotsAcceptLogitsSlice, static_cast(mVocabSize), static_cast(mVocabSizePadded), useRandomAcceptanceThreshold, randomAcceptanceThreshold, reinterpret_cast(bufferCast(*mCurandStates)), stream); } TensorPtr finishedStepsInput = ITensor::slice(mFinishedSteps, step, 1); TensorPtr finishedStepsOutput = ITensor::slice(mFinishedSteps, std::min(maxDecodingEngineTokens - 1, step + 1), 1); finishedStepsInput->squeeze(0); finishedStepsOutput->squeeze(0); TensorPtr newTokensStepView = ITensor::slice(dOutput.newTokensSteps, step, mMaxDecodingDecoderTokens); dInput.logitsVec = logitsVec; dInput.finished = finishedStepsInput; if (input.seqSlots) { TensorPtr batchSlotsDecoderSlice = ITensor::slice(input.seqSlots, step, 1); dInput.batchSlots = batchSlotsDecoderSlice; } else { TensorPtr batchSlotsDecoderSlice = ITensor::slice(mBatchSlotsDecoder, step, 1); batchSlotsDecoderSlice->squeeze(0); dInput.batchSlots = batchSlotsDecoderSlice; } dInput.batchSize = localBatchDecoderIdx; if (mSpeculativeDecodingMode.isMedusa()) { dInput.medusaInputs->medusaLogits = input.predictedDraftLogits; } dOutput.newTokens = newTokensStepView; dOutput.finished = finishedStepsOutput; dOutput.lengths = sequenceLengths; if (localBatchDecoderIdx > 0) { if (forwardType == ForwardType::kASYNC) { decoder.forwardAsync(dOutput, dInput); } else if (forwardType == ForwardType::kSYNC) { decoder.forwardSync(dOutput, dInput); } else { TLLM_THROW("Unknown ForwardType"); } } for (SizeType32 bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || step >= mNumDecodingEngineTokens[bi]) { continue; } mNbSteps[bi] += 1; mFinished[bi] = mNbSteps[bi] >= mMaxNewTokens[bi]; } if (async && localBatchAcceptTokensIdx > 0) { TensorPtr batchSlotsAcceptTokensStepSlice = ITensor::slice(mBatchSlotsAcceptTokens, step, 1); batchSlotsAcceptTokensStepSlice->squeeze(0); auto batchSlotsAcceptTokensSlice = ITensor::slice(batchSlotsAcceptTokensStepSlice, 0, localBatchAcceptTokensIdx); // Update finished state for 0th step auto finishedFinal = ITensor::slice(mFinishedSteps, step, 1); IGptDecoder::acceptDraftTokensByIds( /* [maxBatchSize, maxBeamWidth, maxSeqLen] */ *dOutput.ids, /* [maxBatchSize, maxDecodingDraftTokens] */ *mDraftTokenIds, /* [maxBatchSize] */ *dInput.lengths, /* [maxBatchSize] */ *mNumDraftTokens, /* [maxBatchSize] */ *dOutput.lengths, /* [maxDecodingTokens, maxBatchSize] */ *mFinishedSteps, /* [maxBatchSize] */ *finishedFinal, /* [maxBatchSize] */ *dOutput.finishedSum, /* [bs] */ *batchSlotsAcceptTokensSlice, stream); } // If last iteration if (async && step == maxDecodingEngineTokens - mMaxDecodingDecoderTokens) { CudaEvent event{}; stream->record(event); mStream->wait(event); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::updateFinished(decoder_batch::Token const& token) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); for (std::int32_t i = 0; i < mActualBatchSize; ++i) { if (token.active[i] && !mFinished[i]) { auto& dOutput = *mDecodingOutputs[i]; mFinished[i] = mFinished[i] // This condition requires the synchronization above || bufferCast(*dOutput.finishedSum)[0] == static_cast(mBeamWidths[i]); } } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardSync(decoder_batch::Token const& token) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); token.event.synchronize(); updateFinished(token); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardSync( decoder_batch::Token const& token, decoder_batch::Output& output, decoder_batch::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); token.event.synchronize(); forwardDispatch(output, input, ForwardType::kSYNC); updateFinished(token); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } // TODO call this at the end of forward if mFinished[i] changes from false to true? CudaEvent GptDecoderBatch::postProcessRequest( SizeType32 batchSlot, std::optional> samplingConfig) const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto& stream = mFusedDecoder ? mStream : mStreams[batchSlot]; auto manager = BufferManager{stream}; auto& decoder = mFusedDecoder ? *mDecoders[0] : *mDecoders[batchSlot]; auto& dInput = *mDecodingInputs[batchSlot]; auto& dOutput = *mDecodingOutputs[batchSlot]; if (mFusedDecoder) { auto& dJointOutput = *mJointDecodingOutput; auto slice = [&batchSlot](auto& a, auto& b) { if (b && b->getShape().d[0] > 0) { a = ITensor::slice(b, batchSlot, 1); } }; slice(dOutput.cacheIndirection, dJointOutput.cacheIndirection); slice(dOutput.lengths, dJointOutput.lengths); slice(dOutput.finished, dJointOutput.finished); slice(dOutput.logProbs, dJointOutput.logProbs); dOutput.newTokens = ITensor::view(dJointOutput.newTokens); TLLM_CHECK(dOutput.newTokens->getShape().d[0] == 1); dOutput.newTokens->squeeze(0); dOutput.newTokens = ITensor::slice(dOutput.newTokens, batchSlot, 1); } // TODO can we do this inplace? auto& outputIds = dOutput.ids; auto finalOutputIds = manager.gpu(outputIds->getShape(), outputIds->getDataType()); decoder.gatherTree(*finalOutputIds, dOutput, dInput, manager, samplingConfig); manager.copy(*finalOutputIds, *outputIds); CudaEvent event{}; stream->record(event); mStream->wait(event); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return event; } void GptDecoderBatch::newBatch( GenerationInput const& inputs, GenerationOutput const& outputs, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); // split batch into single requests auto const& inputLengths = inputs.lengths; mActualBatchSize = inputLengths->getShape().d[0]; mNumDecodingEngineTokens.resize(mActualBatchSize); auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const maxBatchSize = jointOutputIdsShape.d[0]; TLLM_CHECK(mActualBatchSize <= maxBatchSize); auto const maxBeamWidth = jointOutputIdsShape.d[1]; TLLM_CHECK(samplingConfig.beamWidth <= maxBeamWidth); auto const inputIdsShape = inputs.ids->getShape(); TensorPtr inputIdsFlatView = ITensor::view(inputs.ids); if (inputs.packed && inputIdsShape.nbDims == 2) { // For users still pass inputs.ids with shape [1, num_tokens], do squeeze for them. inputIdsFlatView->squeeze(0); } auto inputLengthsHost = mBufferManager.copyFrom(*inputLengths, MemoryType::kCPU); auto inputLengthsPtr = bufferCast(*inputLengthsHost); auto inputOffset = 0; for (auto batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx) { mNumDecodingEngineTokens[batchIdx] = 1; auto const inputLength = inputLengthsPtr[batchIdx]; auto const inputShape = ITensor::makeShape({inputLength}); TensorPtr inputView; if (inputs.packed) { TLLM_CHECK(inputIdsFlatView->getShape().nbDims == 1); inputView = ITensor::slice(inputIdsFlatView, inputOffset, inputLength); inputOffset += inputLength; } else { inputView = ITensor::slice(inputs.ids, batchIdx, 1); inputView->reshape(inputShape); } auto request = decoder_batch::Request{inputView, inputLength, inputs.maxNewTokens, inputs.endId}; if (inputs.embeddingBias) { TLLM_THROW("newBatch doesn't support embeddingBias yet."); } if (inputs.badWordsList) { auto const& shape = inputs.badWordsList->getShape(); if (shape.nbDims == 2) { request.badWordsList = inputs.badWordsList; } else { assert(shape.nbDims == 3); TensorPtr badWordsListView = ITensor::slice(inputs.badWordsList, batchIdx, 1); badWordsListView->squeeze(0); request.badWordsList = badWordsListView; } } if (inputs.stopWordsList) { TensorPtr stopWordsListView = ITensor::slice(inputs.stopWordsList, batchIdx, 1); stopWordsListView->squeeze(0); request.stopWordsList = stopWordsListView; } auto requestSamplingConfig = extractSamplingConfig(samplingConfig, batchIdx); requestSamplingConfig.cumLogProbs = {{outputs.cumLogProbs != nullptr}}; requestSamplingConfig.outputLogProbs = {{outputs.logProbs != nullptr}}; newRequest(batchIdx, request, requestSamplingConfig); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardAsync(decoder::Output& output, decoder::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto const& logitsShape = input.logits->getShape(); auto const batchSize = logitsShape.d[0]; auto constexpr singleRequest = 1; std::vector logits; logits.reserve(batchSize); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { auto logitsSlice = std::shared_ptr(ITensor::slice(input.logits, batchIdx, singleRequest)); logits.emplace_back( ITensor::view(logitsSlice, ITensor::makeShape({singleRequest, mBeamWidths[batchIdx], logitsShape.d[2]}))); } decoder_batch::Input batchInput{logits}; batchInput.cacheIndirection = input.cacheIndirection; decoder_batch::Output batchOutput; batchOutput.cacheIndirection = output.cacheIndirection; batchOutput.sequenceLengths = output.sequenceLengths; mForwardToken = forwardAsync(batchOutput, batchInput); mBufferManager.setZero(*mFinishedSum); kernels::reduce(*mFinishedSum, *ITensor::slice(mJointDecodingOutput->finishedSum, 0, mActualBatchSize), *mStream); mStream->record(mForwardEvent); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardSync() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); forwardSync(*mForwardToken); // wait for mFinishedSum to be updated mForwardEvent.synchronize(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::finalize() const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto batchSlots = bufferCast(*mBatchSlotsSetup); for (SizeType32 batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx) { auto event = postProcessRequest(batchSlots ? batchSlots[batchIdx] : batchIdx); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } CudaEvent GptDecoderBatch::finalize(SizeType32 batchSlot, SamplingConfig const& samplingConfig) const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto event = postProcessRequest(batchSlot, samplingConfig); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return event; }