#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import run def generate_output(engine: str, num_beams: int, input_name: str, output_name: str, max_output_len: int = 8, output_logits: bool = False, output_cum_log_probs: bool = False, output_log_probs: bool = False): tp_size = 1 pp_size = 1 model = 'gpt2' resources_dir = Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' tp_pp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-gpu/' engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir data_dir = resources_dir / 'data' input_file = data_dir / (input_name + '.npy') model_data_dir = data_dir / model if num_beams <= 1: output_dir = model_data_dir / 'sampling' else: output_dir = model_data_dir / ('beam_search_' + str(num_beams)) output_name += '_tp' + str(tp_size) + '_pp' + str(pp_size) output_logits_npy = None if output_logits: output_logits_npy = str(output_dir / (output_name + '_logits' + '.npy')) args_list = [ '--engine_dir', str(engine_dir), '--input_file', str(input_file), '--tokenizer_dir', str(models_dir / model), '--output_npy', str(output_dir / (output_name + '.npy')), '--output_csv', str(output_dir / (output_name + '.csv')), '--max_output_len', str(max_output_len), '--num_beams', str(num_beams), '--output_logits_npy', str(output_logits_npy), '--use_py_session' ] output_cum_log_probs_npy = None if output_cum_log_probs: output_cum_log_probs_npy = str( output_dir / (output_name + '_cum_log_probs' + '.npy')) args_list.extend( ['--output_cum_log_probs_npy', str(output_cum_log_probs_npy)]) output_log_probs_npy = None if output_log_probs: output_log_probs_npy = str(output_dir / (output_name + '_log_probs' + '.npy')) args_list.extend(['--output_log_probs_npy', str(output_log_probs_npy)]) args = run.parse_arguments(args_list) run.main(args) def generate_outputs(num_beams): print('Generating GPT2 FP32 outputs') if num_beams == 1: generate_output(engine='fp32-default', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp32') generate_output(engine='fp32-plugin', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp32_plugin') print('Generating GPT2 FP16 outputs') if num_beams == 1: generate_output(engine='fp16-default', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16') generate_output(engine='fp16-plugin', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16_plugin') generate_output(engine='fp16-plugin-packed', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16_plugin_packed') generate_output(engine='fp16-plugin-packed-paged-gather', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16_plugin_packed_paged_gather', output_logits=True, output_log_probs=True, output_cum_log_probs=True) generate_output(engine='fp16-plugin-packed-paged', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16_plugin_packed_paged', output_logits=False, output_log_probs=True, output_cum_log_probs=True) generate_output(engine='fp16-plugin-packed-paged', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_long_fp16_plugin_packed_paged', output_logits=False, max_output_len=128) generate_output( engine='fp16-plugin-packed-paged', num_beams=num_beams, input_name='input_tokens_long', output_name='output_tokens_long_input_fp16_plugin_packed_paged', output_logits=False) generate_output(engine='fp16-plugin-packed-paged-sq', num_beams=num_beams, input_name='input_tokens', output_name='output_tokens_fp16_plugin_packed_paged_sq', output_logits=False) if __name__ == '__main__': generate_outputs(num_beams=1) generate_outputs(num_beams=2)