#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import os import time from pathlib import Path from mpi4py.MPI import COMM_WORLD # isort: off import run # isort: on import tensorrt_llm.bindings as _tb from tensorrt_llm.bindings.internal.testing import ModelSpec def generate_output(engine: str, num_beams: int, model_spec_obj: ModelSpec, tp_size: int = 1, pp_size: int = 1, cp_size: int = 1, max_output_len: int = 8, output_logits: bool = False, output_cum_log_probs: bool = False, output_log_probs: bool = False): model = 'Llama-3.2-1B' resources_dir = Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str( cp_size) + '-gpu/' engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir data_dir = resources_dir / 'data' input_file = data_dir / 'input_tokens_llama.npy' model_data_dir = data_dir / model if num_beams <= 1: output_dir = model_data_dir / 'sampling' else: output_dir = model_data_dir / ('beam_search_' + str(num_beams)) base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0] args_list = [ f'--engine_dir={engine_dir}', f'--input_file={input_file}', f'--tokenizer_dir={models_dir / model}', f'--output_npy={output_dir / (base_output_name + ".npy")}', f'--output_csv={output_dir / (base_output_name + ".csv")}', f'--max_output_len={max_output_len}', f'--num_beams={num_beams}', '--use_py_session', ] if output_logits: args_list.extend([ f'--output_logits_npy={output_dir / (base_output_name + "_logits.npy")}', '--output_generation_logits', ]) if output_cum_log_probs: args_list.extend([ f'--output_cum_log_probs_npy={output_dir / model_spec_obj.get_cum_log_probs_file()}' ]) if output_log_probs: args_list.extend([ f'--output_log_probs_npy={output_dir / model_spec_obj.get_log_probs_file()}' ]) args = run.parse_arguments(args_list) run.main(args) def generate_outputs(num_beams, only_multi_gpu=False): if not only_multi_gpu: tp_pp_cp_sizes = [(1, 1, 1)] elif COMM_WORLD.size == 4: tp_pp_cp_sizes = [(4, 1, 1), (2, 2, 1), (1, 4, 1)] elif COMM_WORLD.size == 2: tp_pp_cp_sizes = [(1, 2, 1), (2, 1, 1)] else: raise RuntimeError( f"The world size of MPI {COMM_WORLD.size} is not equal to 1, 2, or 4." ) model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) model_spec_obj.use_packed_input() for tp_size, pp_size, cp_size in tp_pp_cp_sizes: print( f'Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams}' ) start_time = time.time() output_logits = False output_log_probs = False output_cum_log_probs = False if tp_size == 4 and pp_size == 1: output_logits = True output_log_probs = True output_cum_log_probs = True model_spec_obj.use_tensor_parallelism(tp_size) model_spec_obj.use_pipeline_parallelism(pp_size) model_spec_obj.use_context_parallelism(cp_size) generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, tp_size=tp_size, pp_size=pp_size, cp_size=cp_size, model_spec_obj=model_spec_obj, output_logits=output_logits, output_log_probs=output_log_probs, output_cum_log_probs=output_cum_log_probs) duration = time.time() - start_time print( f"Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams} took {duration} seconds" ) if __name__ == '__main__': parser = _arg.ArgumentParser() parser.add_argument( "--only_multi_gpu", action="store_true", help="Generate data with Pipeline and Tensor Parallelism") args = parser.parse_args() generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu) generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu) print("Done")