/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/quantization.h" #include "tensorrt_llm/thop/thUtils.h" #include #include #include namespace torch_ext { // self: [M, K], fp16/bf16/fp8_quantized // mxfp8: sfVecSize = 32 // alignment: sfVecSize // isSfSwizzledLayout: bool, if true, the scale factors are stored in swizzled layout, otherwise in linear layout. // See QuantizationSFLayout enum for more details about the two layouts. // returns self_mxfp8, self_block_scale_factors // self_mxfp8: [M, K], Float8_e4m3fn // self_block_scale_factors: ceil(M / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE std::tuple mxfp8_quantize( at::Tensor const& self, bool isSfSwizzledLayout, int64_t alignment = 32) { CHECK_TH_CUDA(self); CHECK_CONTIGUOUS(self); // Fixed SF_VEC_SIZE as 32 static constexpr int SF_VEC_SIZE = 32; TORCH_CHECK(alignment % SF_VEC_SIZE == 0, "alignment must be divisible by SF_VEC_SIZE = 32"); auto const& inputShape = self.sizes(); auto const& rank = inputShape.size(); TORCH_CHECK(rank >= 2, "Input should be >=2D tensor."); int64_t m = 1; for (size_t i = 0; i < rank - 1; i++) { m *= inputShape[i]; } auto const k = inputShape[rank - 1]; TORCH_CHECK(k % SF_VEC_SIZE == 0, "k must be divisible by SF_VEC_SIZE = 32"); auto const padded_k = ((k + alignment - 1) / alignment) * alignment; std::vector outputShape(inputShape.begin(), inputShape.end()); outputShape[rank - 1] = padded_k; at::Tensor valMxFP8 = at::detail::empty_cuda(outputShape, at::ScalarType::Float8_e4m3fn, self.device(), /* stride */ std::nullopt); int64_t SFSize = isSfSwizzledLayout ? tensorrt_llm::computeSwizzledLayoutSFSize(m, padded_k / SF_VEC_SIZE) : tensorrt_llm::computeLinearLayoutSFSize(m, padded_k / SF_VEC_SIZE); at::Tensor scaleFP8SF = at::detail::empty_cuda({SFSize}, SF_DTYPE, self.device(), /* stride */ std::nullopt); // 1D tensor const thread_local int mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount(); auto const layout = isSfSwizzledLayout ? tensorrt_llm::QuantizationSFLayout::SWIZZLED : tensorrt_llm::QuantizationSFLayout::LINEAR; #define LAUNCH_MXFP8_QUANTIZE_KERNEL(T) \ tensorrt_llm::kernels::invokeMxFP8Quantization(1, m, k, padded_k, reinterpret_cast(self.data_ptr()), \ reinterpret_cast(valMxFP8.data_ptr()), reinterpret_cast(scaleFP8SF.data_ptr()), layout, \ mMultiProcessorCount, at::cuda::getCurrentCUDAStream(self.get_device())); if (self.scalar_type() == at::ScalarType::Half) { LAUNCH_MXFP8_QUANTIZE_KERNEL(half) } else if (self.scalar_type() == at::ScalarType::BFloat16) { #ifdef ENABLE_BF16 LAUNCH_MXFP8_QUANTIZE_KERNEL(__nv_bfloat16) #else C10_THROW_ERROR(NotImplementedError, "BFloat16 must be enabled to quantize an bf16 tensor to mxfp8."); #endif } else { C10_THROW_ERROR(NotImplementedError, "mxfp8_quantize only supports input tensor with dtypes fp16/bf16."); } #undef LAUNCH_MXFP8_QUANTIZE_KERNEL return {valMxFP8, scaleFP8SF}; } } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "mxfp8_quantize(Tensor input, bool swizzedLayout=True, int alignment=32) " "-> (Tensor, Tensor)"); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("mxfp8_quantize", &torch_ext::mxfp8_quantize); }