# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from .lora_helper import LoraConfig from .mapping import Mapping from .plugin.plugin import PluginConfig class TopModelMixin: """Top model mixin. The Module classes are reused between building blocks (like Attention, MLP) and the top level models (like LLaMAForCausalLM). While there are some functions, like the loading hf/ft weights, or build/load trt engines, that are only supported by the top level model, not the building blocks. So top level model class like: LLaMAForCausalLM shall inherit this class. """ def __init__(self) -> None: pass @classmethod def from_hugging_face( cls, hf_model_dir: str, dtype: Optional[str] = "float16", mapping: Optional[Mapping] = None, **kwargs, ): """Create LLM object and load weights from hugging face. Parameters: hf_model_dir: the hugging face model directory dtype: str, the default weights data type when loading from the hugging face model mapping: Mapping, specify the multi-gpu parallel strategy, when it's None, single GPU is used """ raise NotImplementedError("Subclass shall override this") def use_lora(self, lora_config: LoraConfig): """Load lora weights from the give config to the module. Parameters: lora_config: the lora config """ raise NotImplementedError("Subclass shall override this") def use_prompt_tuning(self, max_prompt_embedding_table_size: str, prompt_table_path: str): """Enable p tuning when build the TRT engine, call this before to_trt.""" raise NotImplementedError def default_plugin_config(self, **kwargs) -> PluginConfig: """Return the default plugin config for this model. This is used when the plugin_config value is not given in to_trt() call. If users need to set different plugin configs, they can start from the return object and change it. """ return PluginConfig.from_dict(kwargs)