# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re import time from collections import OrderedDict from pathlib import Path import numpy as np import torch from datasets import load_dataset from tokenizer import get_tokenizer from torch.utils.data import DataLoader from whisper.normalizers import EnglishTextNormalizer from whisper_utils import (N_SAMPLES, log_mel_spectrogram, pad_or_trim, store_transcripts, write_error_stats) import tensorrt_llm import tensorrt_llm.logger as logger from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt, trt_dtype_to_torch) from tensorrt_llm.bindings import GptJsonConfig, KVCacheType from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelConfig, SamplingConfig from tensorrt_llm.runtime.session import Session, TensorInfo if PYTHON_BINDINGS: from tensorrt_llm.runtime import ModelRunnerCpp def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--log_level', type=str, default='warning') parser.add_argument('--engine_dir', type=str, default='whisper_large_v3') parser.add_argument('--results_dir', type=str, default='tmp') parser.add_argument('--assets_dir', type=str, default='./assets') parser.add_argument('--input_file', type=str, default=None) parser.add_argument('--dataset', type=str, default="hf-internal-testing/librispeech_asr_dummy") parser.add_argument('--name', type=str, default="librispeech_dummy_benchmark") parser.add_argument('--batch_size', type=int, default=4) parser.add_argument('--num_beams', type=int, default=1) parser.add_argument('--debug', action='store_true') parser.add_argument('--enable_warmup', action='store_true') parser.add_argument('--dtype', type=str, default='float16', choices=['float16']) parser.add_argument('--accuracy_check', action='store_true', help="only for CI test") parser.add_argument('--use_py_session', action='store_true', help="use python session or cpp session") return parser.parse_args() def remove_tensor_padding(input_tensor, input_tensor_lengths=None, pad_value=0): if input_tensor.dim() == 2: # Text tensor case: batch, seq_len assert torch.all( input_tensor[:, 0] != pad_value ), "First token in each sequence should not be pad_value" assert input_tensor_lengths is None # Create a mask for all non-pad tokens mask = input_tensor != pad_value # Apply the mask to input_tensor to remove pad tokens output_tensor = input_tensor[mask].view(1, -1) elif input_tensor.dim() == 3: # Audio tensor case: batch, seq_len, feature_len assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor" batch_size, seq_len, feature_len = input_tensor.shape # Initialize a list to collect valid sequences valid_sequences = [] for i in range(batch_size): valid_length = input_tensor_lengths[i] valid_sequences.append(input_tensor[i, :valid_length, :]) # Concatenate all valid sequences along the batch dimension output_tensor = torch.cat(valid_sequences, dim=0) else: raise ValueError("Input tensor must have 2 or 3 dimensions") return output_tensor def read_config(component, engine_dir): config_path = engine_dir / component / 'config.json' with open(config_path, 'r') as f: config = json.load(f) model_config = OrderedDict() model_config.update(config['pretrained_config']) model_config.update(config['build_config']) return model_config class WhisperEncoding: def __init__(self, engine_dir): self.session = self.get_session(engine_dir) config = read_config('encoder', engine_dir) self.n_mels = config['n_mels'] self.dtype = config['dtype'] self.num_languages = config['num_languages'] self.encoder_config = config def get_session(self, engine_dir): serialize_path = engine_dir / 'encoder' / 'rank0.engine' with open(serialize_path, 'rb') as f: session = Session.from_serialized_engine(f.read()) return session def get_audio_features(self, mel, mel_input_lengths, encoder_downsampling_factor=2): if self.encoder_config['plugin_config']['remove_input_padding']: # mel B,D,T -> B,T,D -> BxT, D mel = mel.transpose(1, 2) mel = remove_tensor_padding(mel, mel_input_lengths) inputs = OrderedDict() inputs['input_features'] = mel inputs['input_lengths'] = mel_input_lengths output_list = [ TensorInfo('input_features', str_dtype_to_trt(self.dtype), mel.shape), TensorInfo('input_lengths', str_dtype_to_trt('int32'), mel_input_lengths.shape) ] output_info = (self.session).infer_shapes(output_list) logger.debug(f'output info {output_info}') outputs = { t.name: torch.empty(tuple(t.shape), dtype=trt_dtype_to_torch(t.dtype), device='cuda') for t in output_info } stream = torch.cuda.current_stream() ok = self.session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream) assert ok, 'Engine execution failed' stream.synchronize() encoder_output = outputs['encoder_output'] encoder_output_lengths = mel_input_lengths // encoder_downsampling_factor return encoder_output, encoder_output_lengths class WhisperDecoding: def __init__(self, engine_dir, runtime_mapping, debug_mode=False): self.decoder_config = read_config('decoder', engine_dir) self.decoder_generation_session = self.get_session( engine_dir, runtime_mapping, debug_mode) def get_session(self, engine_dir, runtime_mapping, debug_mode=False): serialize_path = engine_dir / 'decoder' / 'rank0.engine' with open(serialize_path, "rb") as f: decoder_engine_buffer = f.read() decoder_model_config = ModelConfig( max_batch_size=self.decoder_config['max_batch_size'], max_beam_width=self.decoder_config['max_beam_width'], num_heads=self.decoder_config['num_attention_heads'], num_kv_heads=self.decoder_config['num_attention_heads'], hidden_size=self.decoder_config['hidden_size'], vocab_size=self.decoder_config['vocab_size'], cross_attention=True, num_layers=self.decoder_config['num_hidden_layers'], gpt_attention_plugin=self.decoder_config['plugin_config'] ['gpt_attention_plugin'], remove_input_padding=self.decoder_config['plugin_config'] ['remove_input_padding'], kv_cache_type=KVCacheType.PAGED if self.decoder_config['plugin_config']['paged_kv_cache'] == True else KVCacheType.CONTINUOUS, has_position_embedding=self. decoder_config['has_position_embedding'], dtype=self.decoder_config['dtype'], has_token_type_embedding=False, ) decoder_generation_session = tensorrt_llm.runtime.GenerationSession( decoder_model_config, decoder_engine_buffer, runtime_mapping, debug_mode=debug_mode) return decoder_generation_session def generate(self, decoder_input_ids, encoder_outputs, encoder_max_input_length, encoder_input_lengths, eot_id, max_new_tokens=40, num_beams=1): batch_size = decoder_input_ids.shape[0] decoder_input_lengths = torch.tensor([ decoder_input_ids.shape[-1] for _ in range(decoder_input_ids.shape[0]) ], dtype=torch.int32, device='cuda') decoder_max_input_length = torch.max(decoder_input_lengths).item() cross_attention_mask = torch.ones( [batch_size, 1, encoder_max_input_length]).int().cuda() # generation config sampling_config = SamplingConfig(end_id=eot_id, pad_id=eot_id, num_beams=num_beams) self.decoder_generation_session.setup( decoder_input_lengths.size(0), decoder_max_input_length, max_new_tokens, beam_width=num_beams, encoder_max_input_length=encoder_max_input_length) torch.cuda.synchronize() decoder_input_ids = decoder_input_ids.type(torch.int32).cuda() if self.decoder_config['plugin_config']['remove_input_padding']: # 50256 is the index of for all whisper models' decoder WHISPER_PAD_TOKEN_ID = 50256 decoder_input_ids = remove_tensor_padding( decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID) if encoder_outputs.dim() == 3: encoder_output_lens = torch.full((encoder_outputs.shape[0], ), encoder_outputs.shape[1], dtype=torch.int32, device='cuda') encoder_outputs = remove_tensor_padding(encoder_outputs, encoder_output_lens) output_ids = self.decoder_generation_session.decode( decoder_input_ids, decoder_input_lengths, sampling_config, encoder_output=encoder_outputs, encoder_input_lengths=encoder_input_lengths, cross_attention_mask=cross_attention_mask, ) torch.cuda.synchronize() # get the list of int from output_ids tensor output_ids = output_ids.cpu().numpy().tolist() return output_ids class WhisperTRTLLM(object): def __init__(self, engine_dir, debug_mode=False, assets_dir=None, use_py_session=False): world_size = 1 runtime_rank = tensorrt_llm.mpi_rank() runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank) torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node) engine_dir = Path(engine_dir) encoder_config = read_config('encoder', engine_dir) decoder_config = read_config('decoder', engine_dir) self.n_mels = encoder_config['n_mels'] self.num_languages = encoder_config['num_languages'] is_multilingual = (decoder_config['vocab_size'] >= 51865) if is_multilingual: tokenizer_name = "multilingual" assert (Path(assets_dir) / "multilingual.tiktoken").exists( ), "multilingual.tiktoken file is not existed in assets_dir" else: tokenizer_name = "gpt2" assert (Path(assets_dir) / "gpt2.tiktoken").exists( ), "gpt2.tiktoken file is not existed in assets_dir" self.tokenizer = get_tokenizer(name=tokenizer_name, num_languages=self.num_languages, tokenizer_dir=assets_dir) self.eot_id = self.tokenizer.encode( "<|endoftext|>", allowed_special=self.tokenizer.special_tokens_set)[0] if use_py_session: self.encoder = WhisperEncoding(engine_dir) self.decoder = WhisperDecoding(engine_dir, runtime_mapping, debug_mode=debug_mode) else: json_config = GptJsonConfig.parse_file(engine_dir / 'decoder' / 'config.json') assert json_config.model_config.supports_inflight_batching runner_kwargs = dict(engine_dir=engine_dir, is_enc_dec=True, max_batch_size=16, max_input_len=3000, max_output_len=96, max_beam_width=4, debug_mode=debug_mode, kv_cache_free_gpu_memory_fraction=0.9) self.model_runner_cpp = ModelRunnerCpp.from_dir(**runner_kwargs) self.use_py_session = use_py_session def process_batch( self, mel, mel_input_lengths, text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>", num_beams=1, max_new_tokens=96): prompt_id = self.tokenizer.encode( text_prefix, allowed_special=self.tokenizer.special_tokens_set) prompt_id = torch.tensor(prompt_id) batch_size = mel.shape[0] decoder_input_ids = prompt_id.repeat(batch_size, 1) if self.use_py_session: encoder_output, encoder_output_lengths = self.encoder.get_audio_features( mel, mel_input_lengths) encoder_max_input_length = torch.max(encoder_output_lengths).item() output_ids = self.decoder.generate(decoder_input_ids, encoder_output, encoder_max_input_length, encoder_output_lengths, self.eot_id, max_new_tokens=max_new_tokens, num_beams=num_beams) else: with torch.no_grad(): outputs = self.model_runner_cpp.generate( batch_input_ids=decoder_input_ids, encoder_input_features=mel.transpose(1, 2), encoder_output_lengths=mel_input_lengths // 2, max_new_tokens=max_new_tokens, end_id=self.eot_id, pad_id=self.eot_id, num_beams=num_beams, output_sequence_lengths=True, return_dict=True) torch.cuda.synchronize() output_ids = outputs['output_ids'].cpu().numpy().tolist() texts = [] for i in range(len(output_ids)): text = self.tokenizer.decode(output_ids[i][0]).strip() texts.append(text) return texts def decode_wav_file( input_file_path, model, text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>", dtype='float16', batch_size=1, num_beams=1, normalizer=None, mel_filters_dir=None): mel, total_duration = log_mel_spectrogram(input_file_path, model.n_mels, device='cuda', return_duration=True, mel_filters_dir=mel_filters_dir) mel = mel.type(str_dtype_to_torch(dtype)) mel = mel.unsqueeze(0) # repeat the mel spectrogram to match the batch size mel = mel.repeat(batch_size, 1, 1) # TODO: use the actual input_lengths rather than padded input_lengths feature_input_lengths = torch.full((mel.shape[0], ), mel.shape[2], dtype=torch.int32, device=mel.device) predictions = model.process_batch(mel, feature_input_lengths, text_prefix, num_beams) prediction = predictions[0] # remove all special tokens in the prediction prediction = re.sub(r'<\|.*?\|>', '', prediction) if normalizer: prediction = normalizer(prediction) print(f"prediction: {prediction}") results = [(0, [""], prediction.split())] return results, total_duration def collate_wrapper(batch): speeches, durations, labels, ids = [], [], [], [] for item in batch: speech = item["audio"]["array"] duration = speech.shape[-1] speech = pad_or_trim(speech, N_SAMPLES) speech = speech.astype(np.float32) speech = torch.from_numpy(speech) speeches.append(speech) durations.append(duration) labels.append(item["text"]) ids.append(item["id"]) return speeches, durations, labels, ids def decode_dataset( model, dataset, text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>", dtype='float16', batch_size=1, num_beams=1, normalizer=None, sample_rate=16000, mel_filters_dir=None): librispeech_dummy = load_dataset(dataset, "clean", split="validation") data_loader = DataLoader(librispeech_dummy, batch_size=batch_size, num_workers=4, pin_memory=True, collate_fn=collate_wrapper) results = [] total_duration = 0 for batch in data_loader: waveforms, durations, texts, ids = batch total_duration += sum(durations) / sample_rate for wave in waveforms: assert wave.is_pinned() features = [ log_mel_spectrogram(wave, model.n_mels, device='cuda', mel_filters_dir=mel_filters_dir).unsqueeze(0) for wave in waveforms ] features = torch.cat(features, dim=0).type(str_dtype_to_torch(dtype)) # TODO: use the actual input_lengths rather than padded input_lengths feature_input_lengths = torch.full((features.shape[0], ), features.shape[2], dtype=torch.int32, device=features.device) predictions = model.process_batch(features, feature_input_lengths, text_prefix, num_beams) for wav_id, label, prediction in zip(ids, texts, predictions): # remove all special tokens in the prediction prediction = re.sub(r'<\|.*?\|>', '', prediction) if normalizer: prediction, label = normalizer(prediction), normalizer(label) print(f"wav_id: {wav_id}, label: {label}, prediction: {prediction}") results.append((wav_id, label.split(), prediction.split())) return results, total_duration if __name__ == '__main__': args = parse_arguments() tensorrt_llm.logger.set_level(args.log_level) model = WhisperTRTLLM(args.engine_dir, args.debug, args.assets_dir, args.use_py_session) normalizer = EnglishTextNormalizer() if args.enable_warmup: results, total_duration = decode_dataset( model, "hf-internal-testing/librispeech_asr_dummy", batch_size=args.batch_size, num_beams=args.num_beams, normalizer=normalizer, mel_filters_dir=args.assets_dir) start_time = time.time() if args.input_file: results, total_duration = decode_wav_file( args.input_file, model, dtype=args.dtype, batch_size=args.batch_size, num_beams=args.num_beams, mel_filters_dir=args.assets_dir) else: results, total_duration = decode_dataset( model, args.dataset, dtype=args.dtype, batch_size=args.batch_size, num_beams=args.num_beams, normalizer=normalizer, mel_filters_dir=args.assets_dir) elapsed = time.time() - start_time results = sorted(results) Path(args.results_dir).mkdir(parents=True, exist_ok=True) store_transcripts(filename=f"{args.results_dir}/recogs-{args.name}.txt", texts=results) with open(f"{args.results_dir}/errs-{args.name}.txt", "w") as f: total_error_rate = write_error_stats(f, "test-set", results, enable_log=True) if args.accuracy_check and args.dataset == "hf-internal-testing/librispeech_asr_dummy" and not args.input_file: assert total_error_rate <= 2.8, f"Word Error rate using whisper large-v3 model should be 2.40%, but got {total_error_rate}" rtf = elapsed / total_duration s = f"RTF: {rtf:.4f}\n" s += f"total_duration: {total_duration:.3f} seconds\n" s += f"({total_duration/3600:.2f} hours)\n" s += f"processing time: {elapsed:.3f} seconds " f"({elapsed/3600:.2f} hours)\n" s += f"batch size: {args.batch_size}\n" s += f"num_beams: {args.num_beams}\n" s += f"total error rate: {total_error_rate:.2f}%\n" print(s) with open(f"{args.results_dir}/rtf-{args.name}.txt", "w") as f: f.write(s) del model