import torch from ..._utils import str_dtype_to_torch from .split_weights import shuffle_qkv_weights, split_weights_tp def load_weights_from_hf_model(hf_model, config): torch_dtype = str_dtype_to_torch(config.dtype) hf_state_dict = hf_model.state_dict() weights = {} config.quant_mode.is_weight_only() if config.quant_mode.is_int8_weight_only(): torch.int8 elif config.quant_mode.is_int4_weight_only(): torch.quint4x2 # replace key name for key, value in hf_state_dict.items(): # Decoder Layers orig_key = key if "model.layers." in key: key = key.replace("model.layers.", "transformer.layers.") #Attention key = key.replace("self_attn.", "attention.") key = key.replace("query_key_value.", "qkv.") # small key = key.replace("Wqkv.weight", "qkv.weight") key = key.replace("qkv_proj.", "qkv.") #128k #MLP key = key.replace("mlp.fc1.", "mlp.fc.") key = key.replace("mlp.fc2.", "mlp.proj.") key = key.replace("mlp.gate_up_proj.", "mlp.fc.") key = key.replace("mlp.up_proj.", "mlp.fc." if config.architecture == 'Phi3SmallForCausalLM' else "mlp.gate.") #128k key = key.replace("mlp.down_proj.", "mlp.proj.") #128k key = key.replace("mlp.gate_proj.", "mlp.fc.") #128k key = key.replace("o_proj.", "dense.") #128k #Layer norm key = key.replace("post_attention_layernorm.", "post_layernorm.") #128k # Embedding key = key.replace("model.embed_tokens.weight", "transformer.vocab_embedding.weight") # Final Layer norm key = key.replace("model.final_layernorm.", "transformer.ln_f.") key = key.replace("model.norm.", "transformer.ln_f.") #128k if "mlp.gate_up_proj." in orig_key: #4k original_weights = value.contiguous().clone() half_split = original_weights.shape[0] // 2 first_half, second_half = original_weights[: half_split, :], original_weights[ half_split:, :] # Swap the halves value = torch.cat((second_half, first_half), dim=0) if "q_proj" in key: #128k q_param = value k_param = hf_state_dict[orig_key.replace("q_proj", "k_proj")] v_param = hf_state_dict[orig_key.replace("q_proj", "v_proj")] value = torch.cat([q_param, k_param, v_param], dim=0) key = key.replace("q_proj.weight", "qkv.weight") elif "k_proj" in key or "v_proj" in key: continue weights[key] = value.to(torch_dtype).cpu() if config.architecture == 'Phi3SmallForCausalLM': weights['lm_head.weight'] = weights[ 'transformer.vocab_embedding.weight'].clone() # Transform QKV weights from custom Phi3Small format to TRT-LLM format for key, value in weights.items(): if "qkv." in key: weights[key] = shuffle_qkv_weights(weights[key], config) weights = split_weights_tp(config, weights, torch_dtype) return weights