# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os import defs.ci_profiler import pytest from defs.common import (convert_weights, quantize_data, test_llm_torch_multi_lora_support, test_multi_lora_support, venv_check_call, venv_mpi_check_call) from defs.conftest import (get_device_memory, get_sm_version, skip_fp8_pre_ada, skip_post_blackwell, skip_pre_ada) from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @pytest.fixture(scope="module") def phi_example_root(llm_root, llm_venv): "Get phi example root" example_root = os.path.join(llm_root, "examples", "models", "core", "phi") llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) return example_root @skip_post_blackwell @pytest.mark.skip_less_device_memory(40000) @pytest.mark.parametrize("num_beams", [1, 2, 4], ids=lambda num_beams: f'nb:{num_beams}') @pytest.mark.parametrize( "context_fmha_type", ["enable_fmha", "enable_fmha_with_fp32_acc", "disable_fmha"]) @pytest.mark.parametrize( "use_attention_plugin", [True, False], ids=["enable_attention_plugin", "disable_attention_plugin"]) @pytest.mark.parametrize("use_gemm_plugin", [True, False], ids=["enable_gemm_plugin", "disable_gemm_plugin"]) @pytest.mark.parametrize("dtype", ["float16", "bfloat16"]) @pytest.mark.parametrize("llm_phi_model_root", [ "phi-2", "Phi-3-mini-4k-instruct", "Phi-3-mini-128k-instruct", "Phi-3-small-8k-instruct", "Phi-3-small-128k-instruct", "Phi-3.5-mini-instruct" ], indirect=True) def test_llm_phi_single_gpu_summary(phi_example_root, llm_phi_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, use_attention_plugin, use_gemm_plugin, dtype, context_fmha_type, num_beams): "Build & run phi on single gpu." if (not use_attention_plugin or not use_gemm_plugin) \ and get_device_memory() < 80000: pytest.skip("device memory is insufficient.") if context_fmha_type != "disable_fmha": # --enable_context_fmha / --enable_context_fmha_fp32_acc # have to be used together with --use_gpt_attention_plugin use_attention_plugin = True print("Converting checkpoint...") model_name = os.path.basename(llm_phi_model_root) ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=phi_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_phi_model_root, data_type=dtype) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={16}", f"--max_input_len={1024}", f"--max_seq_len={2048}", f"--max_beam_width={num_beams}", ] if use_attention_plugin: build_cmd.append(f"--gpt_attention_plugin={dtype}") if context_fmha_type == "enable_fmha": build_cmd.append("--context_fmha=enable") elif context_fmha_type == "disable_fmha": build_cmd.append("--context_fmha=disable") else: build_cmd.extend([ "--gpt_attention_plugin=disable", "--context_fmha=disable", "--paged_kv_cache=disable", "--remove_input_padding=disable", ]) if use_gemm_plugin: build_cmd.append(f"--gemm_plugin={dtype}") else: build_cmd.append("--gemm_plugin=disable") check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print('Run phi...') run_cmd = [ f"{phi_example_root}/../../../run.py", "--max_output_len=50", f"--engine_dir={engine_dir}", f"--tokenizer_dir={llm_phi_model_root}", ] venv_check_call(llm_venv, run_cmd) rouge1_threshold = 20 if model_name == 'Phi-3-small-8k-instruct': rouge1_threshold = 18.0 if model_name == 'Phi-3-small-128k-instruct': rouge1_threshold = 19.0 summary_cmd = [ f"{phi_example_root}/../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{llm_phi_model_root}", "--data_type", "fp16", "--check_accuracy", f"--engine_dir={engine_dir}", f"--tensorrt_llm_rouge1_threshold={rouge1_threshold}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if context_fmha_type == "enable_fmha_with_fp32_acc": summary_cmd.append("--enable_context_fmha_fp32_acc") venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device(2) @pytest.mark.skip_less_device_memory(40000) @pytest.mark.parametrize("num_beams", [1, 4], ids=lambda num_beams: f'nb:{num_beams}') @pytest.mark.parametrize("llm_phi_model_root", [ "phi-2", "Phi-3-mini-4k-instruct", "Phi-3-mini-128k-instruct", "Phi-3-small-8k-instruct", "Phi-3-small-128k-instruct", 'Phi-3.5-MoE-instruct' ], indirect=True) def test_llm_phi_1node_2gpus_summary(phi_example_root, llm_phi_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, num_beams): "Build & run phi on 2 gpus." print("Converting checkpoint...") model_name = os.path.basename(llm_phi_model_root) ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=phi_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_phi_model_root, data_type="float16", tp_size=2, pp_size=1) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={16}", f"--max_input_len={1024}", f"--max_seq_len={2048}", f"--max_beam_width={num_beams}", "--gemm_plugin=float16", "--gpt_attention_plugin=float16", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print('Run phi...') rouge1_threshold = 21.2 if model_name == 'Phi-3.5-MoE-instruct': rouge1_threshold = 24.0 summary_cmd = [ f"{phi_example_root}/../../../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{llm_phi_model_root}", "--data_type", "fp16", "--check_accuracy", f"--engine_dir={engine_dir}", f"--tensorrt_llm_rouge1_threshold={rouge1_threshold}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"], summary_cmd) @pytest.mark.parametrize("data_type", ["float16", "fp8"], ids=["base_fp16", "base_fp8"]) @pytest.mark.parametrize("lora_data_type", ["float16"], ids=["lora_fp16"]) @pytest.mark.parametrize("llm_phi_model_root", ["Phi-3-mini-4k-instruct"], indirect=True) @pytest.mark.parametrize("llm_lora_model_root", ["Phi-3-mini-4k-instruct-ru-lora"], indirect=True) def test_llm_phi_lora_1gpu(data_type, lora_data_type, phi_example_root, llm_phi_model_root, llm_datasets_root, llm_venv, cmodel_dir, engine_dir, llm_lora_model_root, qcache_dir_without_install_package): "run phi lora test on 1gpu" print("Converting checkpoint...") model_name = 'phi-3-lora' if data_type == 'fp8': skip_fp8_pre_ada(use_fp8=True) if get_sm_version() >= 100: pytest.skip("FP8 is not supported on post-Blackwell architectures") model_dir = quantize_data( llm_venv, phi_example_root, model_dir=llm_phi_model_root, calib_dataset=f"{llm_datasets_root}/cnn_dailymail", dtype="float16", qformat="fp8", kv_cache_dtype="fp8", quantize_dir=qcache_dir_without_install_package, calib_size=512) else: model_dir = convert_weights(llm_venv=llm_venv, example_root=phi_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_phi_model_root) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", "--lora_plugin=auto", "--gemm_plugin=auto", "--max_batch_size=8", f"--lora_dir={llm_lora_model_root}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) ref_1 = [ 1, 1815, 366, 3867, 5837, 304, 17545, 18240, 310, 9892, 16397, 322, 8338, 265, 29888, 21211, 29973, 306, 29915, 29885, 3063, 363, 907, 1230, 322, 9045, 29891, 9522, 5547, 393, 11039, 403, 1716, 285, 21211, 29889, 29871 ] ref_2 = [ 1815, 366, 3867, 5837, 304, 17545, 18240, 310, 9892, 16397, 322, 8338, 265, 29888, 21211, 29973, 13, 13, 7900, 22137, 29901, 315, 13946, 368, 29991, 2266, 526, 777, 907, 1230, 5837, 304, 13389, 9892, 16397, 322 ] input_text = "Can you provide ways to eat combinations of bananas and dragonfruits?" print(f"Run inference with lora id 0...") venv_check_call(llm_venv, [ f"{phi_example_root}/../../../run.py", "--max_output_len=20", f"--input_text={input_text}", "--lora_task_uids=0", f"--tokenizer_dir={llm_lora_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv", "--use_py_session", ]) with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_1 == predict or data_type != "float16" print(f"Run inference with lora id -1...") venv_check_call(llm_venv, [ f"{phi_example_root}/../../../run.py", "--max_output_len=20", f"--input_text={input_text}", "--lora_task_uids=-1", f"--tokenizer_dir={llm_phi_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv", "--use_py_session", ]) with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_2 == predict or data_type != "float16" @skip_pre_ada @pytest.mark.parametrize("data_type", ['float16', 'bfloat16']) @pytest.mark.parametrize("qformat", ['fp8']) @pytest.mark.parametrize("llm_phi_model_root", [ pytest.param("phi-2", marks=skip_post_blackwell), pytest.param("Phi-3-mini-128k-instruct", marks=skip_post_blackwell), pytest.param("Phi-3-small-128k-instruct", marks=skip_post_blackwell), pytest.param("Phi-3.5-mini-instruct", marks=skip_post_blackwell), "Phi-3.5-MoE-instruct", "Phi-4-mini-instruct" ], indirect=True) def test_llm_phi_quantization_1gpu(data_type, llm_phi_model_root, llm_venv, cmodel_dir, engine_dir, phi_example_root, llm_datasets_root, llm_rouge_root, qformat): "Run phi quantization tests" # Workaround for Modelopt can't convert Phi-3 on multi GPUs. gpu_constraint = {"CUDA_VISIBLE_DEVICES": "0"} print("Convert checkpoint by modelopt...") convert_cmd = [ f"{phi_example_root}/../../../quantization/quantize.py", f"--model_dir={llm_phi_model_root}", f"--calib_dataset={llm_datasets_root}/cnn_dailymail", f"--dtype={data_type}", f"--qformat={qformat}", f"--kv_cache_dtype={qformat}", f"--output_dir={cmodel_dir}", ] venv_check_call(llm_venv, convert_cmd, env=gpu_constraint) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={cmodel_dir}", f"--output_dir={engine_dir}", "--max_input_len=3000", "--max_seq_len=3100", f"--max_batch_size={16}", ] build_env = { **llm_venv._new_env, **gpu_constraint } if llm_venv._new_env else gpu_constraint check_call(" ".join(build_cmd), shell=True, env=build_env) print("Run summarize...") threshold_score = 24.0 model_name = os.path.basename(llm_phi_model_root) if model_name == "phi-2": threshold_score = 22.0 summary_cmd = [ f"{phi_example_root}/../../../summarize.py", "--test_trt_llm", f"--hf_model_dir={llm_phi_model_root}", f"--tokenizer_dir={llm_phi_model_root}", f"--engine_dir={engine_dir}", "--check_accuracy", f"--tensorrt_llm_rouge1_threshold={threshold_score}", "--max_ite=40", f"--batch_size={16}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}", ] venv_check_call(llm_venv, summary_cmd, env=gpu_constraint) @skip_pre_ada @skip_post_blackwell @pytest.mark.parametrize("llm_phi_model_root", [ "phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct", "Phi-3.5-mini-instruct", "Phi-3.5-MoE-instruct", "Phi-4-mini-instruct" ], indirect=True) def test_phi_fp8_with_bf16_lora(llm_phi_model_root, llm_venv, cmodel_dir, engine_dir, phi_example_root, llm_datasets_root, llm_rouge_root, data_type='bfloat16', qformat='fp8'): "Run Phi models with multiple pseudo LoRAs." model_name = os.path.basename(llm_phi_model_root) if model_name == "Phi-3.5-MoE-instruct" and \ get_device_memory() < 95000: pytest.skip(f"This test is only supported when memory >= 95000") # Quantize the base model to fp8. print("Convert checkpoint by modelopt...") convert_cmd = [ f"{phi_example_root}/../../../quantization/quantize.py", f"--model_dir={llm_phi_model_root}", f"--calib_dataset={llm_datasets_root}/cnn_dailymail", f"--dtype={data_type}", f"--qformat={qformat}", f"--kv_cache_dtype={qformat}", f"--output_dir={cmodel_dir}", ] # Workaround for Modelopt can't convert Phi-3-small-128k-instruct on multi GPUs. env = None if model_name == "Phi-3-small-128k-instruct": env = {"CUDA_VISIBLE_DEVICES": "0"} venv_check_call(llm_venv, convert_cmd, env=env) print("Creating pseudo LoRAs...") hf_target_modules = { "phi-2": ["q_proj", "k_proj", "v_proj"], "Phi-3-mini-128k-instruct": ["qkv_proj"], "Phi-3-small-128k-instruct": ["query_key_value"], "Phi-3.5-mini-instruct": ["qkv_proj"], "Phi-3.5-MoE-instruct": ["q_proj", "k_proj", "v_proj", "w1", "w2", "w3"], "Phi-4-mini-instruct": ["qkv_proj"], } trtllm_target_modules = { "phi-2": ["attn_q", "attn_k", "attn_v"], "Phi-3-mini-128k-instruct": ["attn_qkv"], "Phi-3-small-128k-instruct": ["attn_qkv"], "Phi-3.5-mini-instruct": ["attn_qkv"], "Phi-3.5-MoE-instruct": [ "attn_q", "attn_k", "attn_v", "moe_h_to_4h", "moe_4h_to_h", "moe_gate" ], "Phi-4-mini-instruct": ["attn_qkv"], } model_name = os.path.basename(llm_phi_model_root) test_multi_lora_support( hf_model_dir=llm_phi_model_root, tllm_ckpt_dir=cmodel_dir, engine_dir=engine_dir, llm_venv=llm_venv, example_root=phi_example_root, num_loras=2, lora_rank=8, target_hf_modules=hf_target_modules[model_name], target_trtllm_modules=trtllm_target_modules[model_name], zero_lora_weights=True, ) @pytest.mark.skip( reason="TODO: Resolve an import issue with transformers's LossKwargs") @skip_pre_ada @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("llm_phi_model_root", ['Phi-4-mini-instruct'], indirect=True) def test_phi_4_mini_instruct_with_bf16_lora_torch( phi_example_root, llm_datasets_root, qcache_dir_without_install_package, llm_venv, engine_dir, llm_phi_model_root): """Run Phi-4-mini-instruct with multiple dummy LoRAs using LLM-API Torch backend.""" expected_outputs = { 'Phi-4-mini-instruct': ["...", "...", "...", "...", "..."], } print("Testing with LLM-API Torch backend...") defs.ci_profiler.start("test_llm_torch_multi_lora_support") model_name = os.path.basename(llm_phi_model_root).lower() test_llm_torch_multi_lora_support( hf_model_dir=llm_phi_model_root, llm_venv=llm_venv, num_loras=2, lora_rank=8, target_hf_modules=["qkv_proj"], target_trtllm_modules=["attn_qkv"], zero_lora_weights=True, tensor_parallel_size=1, expected_outputs=expected_outputs[model_name]) defs.ci_profiler.stop("test_llm_torch_multi_lora_support")