/* * Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef TOP_LEVEL_DIR #error "Define TOP_LEVEL_DIR" #endif #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/iBuffer.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/utils/numpyUtils.h" #include #include #include #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; namespace fs = std::filesystem; class UtilsTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init) { protected: void SetUp() override { mDeviceCount = tc::getDeviceCount(); if (mDeviceCount == 0) GTEST_SKIP(); mStream = std::make_unique(); mManager = std::make_unique(mStream); } void TearDown() override {} int mDeviceCount; std::unique_ptr mManager; BufferManager::CudaStreamPtr mStream; }; TEST_F(UtilsTest, LoadNpy) { auto const testResourcePath = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources"; auto const inputFile = testResourcePath / "data/input_tokens.npy"; auto loadedTensor = utils::loadNpy(*mManager, inputFile.string(), MemoryType::kCPU); ASSERT_EQ(loadedTensor->getSize(), 96); EXPECT_EQ(loadedTensor->getShape().nbDims, 2); EXPECT_EQ(loadedTensor->getShape().d[0], 8); EXPECT_EQ(loadedTensor->getShape().d[1], 12); } TEST_F(UtilsTest, LoadStoreNpy) { auto dims = ITensor::makeShape({2, 3, 4}); auto constexpr dataType = nvinfer1::DataType::kFLOAT; ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)}; auto tensorRange = BufferRange(*tensor); std::iota(tensorRange.begin(), tensorRange.end(), 0); std::string filename{"tensor.npy"}; utils::saveNpy(*mManager, *tensor, filename); auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kCPU); ASSERT_EQ(loadedTensor->getSize(), tensor->getSize()); EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims); EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]); EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]); EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]); auto loadedTensorRange = BufferRange(*loadedTensor); for (size_t i = 0; i < tensor->getSize(); ++i) { EXPECT_EQ(loadedTensorRange[i], tensorRange[i]); } } TEST_F(UtilsTest, LoadStoreNpyGPU) { auto dims = ITensor::makeShape({2, 3, 4}); auto constexpr dataType = nvinfer1::DataType::kFLOAT; ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)}; auto tensorRange = BufferRange(*tensor); std::iota(tensorRange.begin(), tensorRange.end(), 0); auto deviceTensor = mManager->copyFrom(*tensor, MemoryType::kGPU); std::string filename{"tensor.npy"}; utils::saveNpy(*mManager, *deviceTensor, filename); auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kGPU); ASSERT_EQ(loadedTensor->getSize(), tensor->getSize()); EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims); EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]); EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]); EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]); auto hostTensor = mManager->copyFrom(*loadedTensor, MemoryType::kCPU); auto loadedTensorRange = BufferRange(*hostTensor); for (size_t i = 0; i < tensor->getSize(); ++i) { EXPECT_EQ(loadedTensorRange[i], tensorRange[i]); } }