/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplPrecompiled.h" #include "tensorrt_llm/common/cudaDriverWrapper.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/workspace.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/cubin/xqa_kernel_cubin.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAConstants.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplCommon.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQARunner.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.h" #include "tensorrt_llm/kernels/kvCacheUtils.h" #include "tensorrt_llm/kernels/unfusedAttentionKernels.h" #include #include #include #include #include using namespace tensorrt_llm::common; namespace tensorrt_llm::kernels { class XQAKernelList { public: using TKernelMeta = XQAKernelMetaInfo; XQAKernelList(Data_type type, unsigned int sm) : mDriver(tensorrt_llm::common::CUDADriverWrapper::getInstance()) , mDataType(type) , mKernelMetaCount(sizeof(sXqaKernelMetaInfo) / sizeof(sXqaKernelMetaInfo[0])) , mKernelMeta(&sXqaKernelMetaInfo[0]) , mSM(sm) { mForceXQA = forceXQAKernels(); } void loadXQAKernels() { if (!mFunctions.empty()) { return; } for (unsigned int i = 0; i < mKernelMetaCount; ++i) { auto const& kernelMeta = mKernelMeta[i]; if (kernelMeta.mSM != mSM || kernelMeta.mDataType != mDataType) continue; // Cubins for kernels that would take the JIT path are removed from kernelMeta. if (kernelMeta.mCubin == nullptr) continue; CUmodule hmod{0}; auto findModuleIter = mModules.find(kernelMeta.mCubin); if (findModuleIter != mModules.end()) { hmod = findModuleIter->second; } else { TLLM_CU_CHECK(mDriver->cuModuleLoadData(&hmod, kernelMeta.mCubin)); mModules.insert(std::make_pair(kernelMeta.mCubin, hmod)); } XQAKernelFuncInfo funcInfo{}; funcInfo.mMetaInfoIndex = i; TLLM_CU_CHECK(mDriver->cuModuleGetFunction(&funcInfo.mDeviceFunction, hmod, kernelMeta.mFuncName)); funcInfo.mSharedMemBytes = getGlobalVar(mDriver, hmod, "smemSize", true).value(); funcInfo.mKernelType = getGlobalVar(mDriver, hmod, "kernelType", false) .value_or(XQAKernelType::kAMPERE_WARP_SPECIALIZED); /* Set 46KB threshold here because we have to take static/driver shared memory into consideration. */ if (funcInfo.mSharedMemBytes >= 46 * 1024) { TLLM_CU_CHECK(mDriver->cuFuncSetAttribute(funcInfo.mDeviceFunction, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, funcInfo.mSharedMemBytes)); } XQAKernelRuntimeHashKey hash_key{kernelMeta.mKVDataType, kernelMeta.mHeadDim, kernelMeta.mBeamWidth, kernelMeta.mNumQHeadsOverKV, kernelMeta.mMTileSize, kernelMeta.mTokensPerPage, kernelMeta.mPagedKVCache, kernelMeta.mMultiQueryTokens}; mFunctions.insert(std::make_pair(hash_key, funcInfo)); } } bool supportConfig(XQAParams const& xqaParams) const { unsigned int head_size = xqaParams.head_size; int num_q_heads = xqaParams.num_q_heads; int num_kv_heads = xqaParams.num_kv_heads; TLLM_CHECK_WITH_INFO(num_q_heads % num_kv_heads == 0, "numQHeads should be multiple of numKVHeads."); unsigned int num_q_heads_over_kv = num_q_heads / num_kv_heads; unsigned int beam_width = xqaParams.beam_width; // MultiQueryToken kernels can support any num_q_heads_over_kv that is power of 2. unsigned int kernel_num_q_heads_over_kv = xqaParams.multi_query_tokens ? 0 : num_q_heads_over_kv; unsigned int m_tilesize; if (xqaParams.multi_query_tokens) { // MultiQueryToken kernels can handle either 16/32 for M direction per CTA. m_tilesize = xqaParams.generation_input_length <= 16 ? 16 : 32; } else { m_tilesize = num_q_heads_over_kv; } XQAKernelRuntimeHashKey hash_key = {xqaParams.kv_cache_data_type, head_size, beam_width, kernel_num_q_heads_over_kv, m_tilesize, xqaParams.paged_kv_cache ? static_cast(xqaParams.tokens_per_block) : 0, xqaParams.paged_kv_cache, xqaParams.multi_query_tokens}; auto const findIter = mFunctions.find(hash_key); return findIter != mFunctions.end(); } bool mayHavePerfGain(XQAParams const& xqaParams, int multiprocessor_count) const { // NOTE: only XQA supports multi_query_tokens (Medusa mode). if (mForceXQA || xqaParams.multi_query_tokens) { return true; } int num_kv_heads = xqaParams.num_kv_heads; int batch_size = static_cast(xqaParams.batch_size); int multi_block_count = 1; if (xqaParams.multi_block_mode) { int history_length = xqaParams.timestep; multi_block_count = history_length / kMinHistoryTokensPerBlock; } int block_count = num_kv_heads * batch_size * multi_block_count; return static_cast(block_count) * kEnableMinBlockFactor >= static_cast(multiprocessor_count); } template void run(XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer, int multiprocessor_count, cudaStream_t const& stream) const { unsigned int head_size = xqaParams.head_size; int num_q_heads = xqaParams.num_q_heads; int num_kv_heads = xqaParams.num_kv_heads; TLLM_CHECK_WITH_INFO(num_q_heads % num_kv_heads == 0, "numQHeads should be multiple of numKVHeads."); unsigned int num_q_heads_over_kv = num_q_heads / num_kv_heads; unsigned int beam_width = xqaParams.beam_width; unsigned int batch_beam_size = xqaParams.batch_size * beam_width; const KvCacheDataType cache_type = xqaParams.kv_cache_quant_mode.hasInt8KvCache() ? KvCacheDataType::INT8 : (xqaParams.kv_cache_quant_mode.hasFp8KvCache() ? KvCacheDataType::FP8 : KvCacheDataType::BASE); XQALaunchParam launchParams; bool const needOutputCvt = (xqaParams.fp8_out_scale != nullptr); void* inputScratch = nullptr; buildXQALaunchParams(launchParams, inputScratch, needOutputCvt, xqaParams, kv_cache_buffer); // Build cu_seqlens, padding_offset, and rotary inv freq tensors BuildDecoderInfoParams decoder_params; memset(&decoder_params, 0, sizeof(decoder_params)); decoder_params.seqQOffsets = launchParams.cu_seq_lens; decoder_params.seqQLengths = xqaParams.spec_decoding_generation_lengths; decoder_params.seqKVLengths = xqaParams.sequence_lengths; decoder_params.batchSize = int(batch_beam_size); decoder_params.maxQSeqLength = xqaParams.generation_input_length; TLLM_CHECK_WITH_INFO(!xqaParams.multi_query_tokens || xqaParams.spec_decoding_generation_lengths != nullptr, "Spec_decoding_generation_lengths must be provided."); // Rotary embedding inv_freq buffer. decoder_params.rotaryEmbeddingScale = xqaParams.rotary_embedding_scale; decoder_params.rotaryEmbeddingBase = xqaParams.rotary_embedding_base; decoder_params.rotaryEmbeddingDim = xqaParams.rotary_embedding_dim; decoder_params.rotaryScalingType = xqaParams.rotary_embedding_scale_type; decoder_params.rotaryEmbeddingInvFreq = launchParams.rotary_inv_freq_buf; decoder_params.rotaryEmbeddingInvFreqCache = xqaParams.rotary_embedding_inv_freq_cache; decoder_params.rotaryEmbeddingMaxPositions = xqaParams.rotary_embedding_max_positions; invokeBuildDecoderInfo(decoder_params, stream); sync_check_cuda_error(); // IDEA: Store rotary_processed Q buffer to output buffer. // NOTE: MHA kernels should read kv cache that has already been appended with new tokens' kv cache. void* xqa_q_input_ptr = inputScratch; QKVPreprocessingParams preprocessingParms{static_cast(const_cast(xqaParams.qkv)), nullptr, nullptr, static_cast(xqa_q_input_ptr), kv_cache_buffer, static_cast(xqaParams.qkv_bias), xqaParams.logn_scaling_ptr, xqaParams.spec_decoding_generation_lengths, xqaParams.sequence_lengths, /* encoder_seqlens */ nullptr, xqaParams.multi_query_tokens ? launchParams.cu_seq_lens : nullptr, /* cu_kv_seqlens */ nullptr, launchParams.rotary_inv_freq_buf, (float2 const*) nullptr, xqaParams.kv_scale_orig_quant, xqaParams.spec_decoding_position_offsets, xqaParams.mrope_rotary_sin_cos, xqaParams.mrope_position_deltas, int(batch_beam_size), xqaParams.generation_input_length, xqaParams.timestep, xqaParams.cyclic_attention_window_size, xqaParams.sink_token_length, int(xqaParams.batch_size * beam_width * xqaParams.generation_input_length), /*remove_padding*/ true, /*cross_attention*/ false, xqaParams.num_q_heads, xqaParams.num_kv_heads, xqaParams.num_q_heads / xqaParams.num_kv_heads, xqaParams.head_size, xqaParams.rotary_embedding_dim, xqaParams.rotary_embedding_base, xqaParams.rotary_embedding_scale_type, xqaParams.rotary_embedding_scale, xqaParams.rotary_embedding_max_positions, xqaParams.position_embedding_type, xqaParams.position_shift_enabled, cache_type, true, false, multiprocessor_count, xqaParams.rotary_vision_start, xqaParams.rotary_vision_length}; invokeQKVPreprocessing(preprocessingParms, stream); sync_check_cuda_error(); XQAKernelRuntimeHashKey hash_key = getRuntimeHashKeyFromXQAParams(xqaParams); auto const findIter = mFunctions.find(hash_key); TLLM_CHECK_WITH_INFO(findIter != mFunctions.end(), "XQAKernelFunc not found."); auto const& kernelMeta = mKernelMeta[findIter->second.mMetaInfoIndex]; const CUfunction func = findIter->second.mDeviceFunction; unsigned int const shared_mem_bytes = findIter->second.mSharedMemBytes; auto const kernelType = findIter->second.mKernelType; if (xqaParams.multi_query_tokens) { // MultiQueryTokens (generation_input_length > 1) need extra parameters (like qSeqLen, headGrpSize, and // mask). Input parameters for MultiQueryTokens kernels. unsigned int headGrpSize = num_q_heads_over_kv; // Use mTileSize = 16 kernels when qSeqLen <= 16. unsigned int qSeqLen = static_cast(xqaParams.generation_input_length); unsigned int mTileSize = qSeqLen <= 16 ? 16 : 32; unsigned int nbTokenBlocksPerGrp = divUp(qSeqLen * headGrpSize, mTileSize); int const* maskPtr = xqaParams.spec_decoding_packed_mask; int const* cuQSeqLens = launchParams.cu_seq_lens; unsigned int maxQSeqLen = xqaParams.spec_decoding_is_generation_length_variable ? // true for ReDrafter xqaParams.spec_decoding_max_generation_length : qSeqLen; // TODO: merge SingleQueryToken params and MultiQueryTokens params into one kernelParams. void* kernelParams[] = {&maxQSeqLen, &launchParams.num_k_heads, &headGrpSize, &cuQSeqLens, &launchParams.output, &xqa_q_input_ptr, &maskPtr, &launchParams.kvCacheParams, &launchParams.batch_size, &launchParams.kv_scale_quant_orig, &launchParams.scratch}; int multi_block = 1; if (xqaParams.multi_block_mode) { multi_block = computeMultiBlockCount(xqaParams, xqaParams.batch_size, multiprocessor_count); check_cuda_error(cudaMemsetAsync(xqaParams.workspaces, 0, sizeof(int) * xqaParams.batch_size * qSeqLen * xqaParams.num_kv_heads, stream)); sync_check_cuda_error(); } TLLM_CU_CHECK(mDriver->cuLaunchKernel(func, multi_block, xqaParams.num_kv_heads * nbTokenBlocksPerGrp, xqaParams.batch_size, 128, 1, 2, shared_mem_bytes, stream, kernelParams, nullptr)); } else { bool const isGmmaKernel = (kernelType == XQAKernelType::kHOPPER_WARP_SPECIALIZED); TLLM_CHECK(isGmmaKernel == (mSM == kSM_90 && xqaParams.kv_cache_data_type == XQADataType::DATA_TYPE_E4M3 && xqaParams.beam_width == 1)); constexpr uint32_t kMAX_NB_KERNEL_PARAMS = 11; uint32_t const maxNbKernelParams = (isGmmaKernel ? 11 : 10); uint32_t idxNextParam = 0; void* kernelParams[kMAX_NB_KERNEL_PARAMS]; auto appendParam = [&](auto* p) mutable { TLLM_CHECK(idxNextParam < maxNbKernelParams); kernelParams[idxNextParam++] = p; }; appendParam(&launchParams.num_k_heads); appendParam(&launchParams.output); appendParam(&xqa_q_input_ptr); appendParam(&launchParams.kvCacheParams); if (xqaParams.beam_width > 1) { appendParam(&launchParams.beamSearchParams.value()); } appendParam(&launchParams.batch_size); appendParam(&launchParams.kv_scale_quant_orig); CUtensorMap tensorMap{}; if (isGmmaKernel) { tensorMap = makeTensorMapForKVCache(mDriver, xqaParams, kv_cache_buffer); appendParam(&tensorMap); } appendParam(&launchParams.semaphores); appendParam(&launchParams.scratch); kernelParams[idxNextParam] = nullptr; // one extra nullptr at end as guard. int multi_block = 1; if (xqaParams.multi_block_mode) { multi_block = computeMultiBlockCount(xqaParams, xqaParams.batch_size, multiprocessor_count); } TLLM_CU_CHECK(mDriver->cuLaunchKernel(func, multi_block, xqaParams.num_kv_heads, xqaParams.batch_size, 128, 1, isGmmaKernel ? 3 : 2, shared_mem_bytes, stream, kernelParams, nullptr)); } sync_check_cuda_error(); if (needOutputCvt) { tensorrt_llm::kernels::invokeConversion<__nv_fp8_e4m3, T>(static_cast<__nv_fp8_e4m3*>(xqaParams.output), static_cast(launchParams.output), xqaParams.head_size * xqaParams.num_q_heads * xqaParams.total_num_input_tokens, xqaParams.fp8_out_scale, stream); sync_check_cuda_error(); } } protected: std::shared_ptr mDriver; Data_type mDataType; TKernelMeta const* mKernelMeta; unsigned int mKernelMetaCount; unsigned int mSM; std::unordered_map mModules; bool mForceXQA = false; struct XQAKernelFuncInfo { unsigned int mMetaInfoIndex; unsigned int mSharedMemBytes; CUfunction mDeviceFunction; XQAKernelType mKernelType; }; std::unordered_map mFunctions; }; class XQAKernelLoader { public: XQAKernelList const* getXQAKernels(Data_type type, unsigned int sm) { static std::mutex s_mutex; std::lock_guard lg(s_mutex); XQAKernelLoadHashKey hash_key{type, sm}; auto const findIter = mKernels.find(hash_key); if (findIter == mKernels.end()) { XQAKernelList* newKernel = new XQAKernelList{type, sm}; newKernel->loadXQAKernels(); mKernels.insert(std::make_pair(hash_key, std::unique_ptr(newKernel))); return newKernel; } return findIter->second.get(); } static XQAKernelLoader& Get() { int device_id = tensorrt_llm::common::getDevice(); static std::unique_ptr s_factory[32] = {nullptr}; if (s_factory[device_id] == nullptr) { assert(device_id <= 32); s_factory[device_id] = std::make_unique(XQAKernelLoader()); } return *(s_factory[device_id]); } private: XQAKernelLoader() = default; std::unordered_map, XQAKernelLoadHasher> mKernels; }; inline XQAKernelList const* getXQAKernels(Data_type type, unsigned int sm) { return XQAKernelLoader::Get().getXQAKernels(type, sm); } #define XQA_KERNEL_RUN(DATA_TYPE) \ xqa_kernel->template run(xqa_params, kv_cache_buffer, multi_processor_count, stream); template void DecoderXQAImplPrecompiled::runDispatchBuffer( XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream) { XQAKernelList const* xqa_kernel = getXQAKernels(mRunner->mDataType, tensorrt_llm::common::getSMVersion()); int multi_processor_count = mRunner->mMultiProcessorCount; if (mRunner->mDataType == DATA_TYPE_FP16) { XQA_KERNEL_RUN(__half); } else { XQA_KERNEL_RUN(__nv_bfloat16); } } #undef XQA_KERNEL_RUN #define SUPPORT_RETURN_FALSE(X) \ { \ return false; \ } bool DecoderXQAImplPrecompiled::shouldUse(XQAParams const& xqaParams, bool forConfigurePlugin) { if (!(xqaParams.data_type == DATA_TYPE_FP16 || xqaParams.data_type == DATA_TYPE_BF16)) { SUPPORT_RETURN_FALSE("data type"); } bool const isGPTJBeam4Kernel = (xqaParams.head_size == 256 && xqaParams.beam_width == 4 && xqaParams.paged_kv_cache && (xqaParams.tokens_per_block == 64 || xqaParams.tokens_per_block == 128)); if (xqaParams.head_size != 64 && xqaParams.head_size != 128 && xqaParams.head_size != 256 && !isGPTJBeam4Kernel) { SUPPORT_RETURN_FALSE("head_size"); } if (xqaParams.unidirectional != 1) { SUPPORT_RETURN_FALSE("unidirectional"); } if (xqaParams.q_scaling != 1.0f) { SUPPORT_RETURN_FALSE("q_scaling"); } if (xqaParams.mask_type != tensorrt_llm::kernels::AttentionMaskType::CAUSAL) { SUPPORT_RETURN_FALSE("mask_type"); } if (xqaParams.cross_attention) { SUPPORT_RETURN_FALSE("cross_attention"); } // Only support 64/128 tokens per block. if (xqaParams.paged_kv_cache && xqaParams.tokens_per_block != 64 && xqaParams.tokens_per_block != 128) { SUPPORT_RETURN_FALSE("paged_kv_cache"); } if (xqaParams.beam_width != 1 && !isGPTJBeam4Kernel) { SUPPORT_RETURN_FALSE("beam_width"); } if (xqaParams.cyclic_attention_window_size != xqaParams.max_attention_window_size) { SUPPORT_RETURN_FALSE("cyclic_attention_window_size != max_attention_window_size"); } if (xqaParams.position_shift_enabled || xqaParams.sink_token_length > 0) { SUPPORT_RETURN_FALSE("streaming-llm"); } // OPTIMIZE: For the standard generation-phase MHA, there are still extra limitations. // NOTE: Medusa mode = Multi_query_tokens > 1. int const nbQHeads = xqaParams.num_q_heads; int const nbKVHeads = xqaParams.num_kv_heads; int const nbQHeadsPerKV = nbQHeads / nbKVHeads; // MultiQueryTokens mode (Medusa mode) can support any nbQHeadsPerKV. if (!xqaParams.multi_query_tokens) { if (nbQHeadsPerKV != 16 && nbQHeadsPerKV != 8 && nbQHeadsPerKV != 1) { SUPPORT_RETURN_FALSE("nbHeads"); } } if (!forConfigurePlugin) { // Inference time checks. if (xqaParams.host_past_key_value_lengths == nullptr) { SUPPORT_RETURN_FALSE("host_past_key_value_lengths"); } for (int i = 0; i < xqaParams.batch_size; ++i) { // Only checks for non-medusa case, because medusa may not accept all tokens in host_past_key_value_lengths. // FIXME(perkzz): medusa should check for sliding-window attention. if (!xqaParams.multi_query_tokens && xqaParams.host_past_key_value_lengths[i] + 1 > xqaParams.max_attention_window_size) { SUPPORT_RETURN_FALSE("sliding window attention"); } } } XQAKernelList const* xqa_kernel = getXQAKernels(mRunner->mDataType, tensorrt_llm::common::getSMVersion()); return xqa_kernel->supportConfig(xqaParams) && xqa_kernel->mayHavePerfGain(xqaParams, mRunner->mMultiProcessorCount); } #undef SUPPORT_RETURN_FALSE void DecoderXQAImplPrecompiled::prepare(XQAParams const&) { // Intentionally do nothing. } void DecoderXQAImplPrecompiled::runWithKVLinearBuffer( XQAParams const& xqa_params, KVLinearBuffer const& kv_linear_buffer, cudaStream_t const& stream) { runDispatchBuffer(xqa_params, kv_linear_buffer, stream); } void DecoderXQAImplPrecompiled::runWithKVBlockArray( XQAParams const& xqa_params, KVBlockArray const& kv_block_array, cudaStream_t const& stream) { runDispatchBuffer(xqa_params, kv_block_array, stream); } } // namespace tensorrt_llm::kernels