### Generate Text Using Medusa Decoding from tensorrt_llm import LLM, SamplingParams from tensorrt_llm.llmapi import (LLM, BuildConfig, KvCacheConfig, MedusaDecodingConfig, SamplingParams) from tensorrt_llm.models.modeling_utils import SpeculativeDecodingMode def main(): # Sample prompts. prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # The end user can customize the sampling configuration with the SamplingParams class sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # The end user can customize the build configuration with the BuildConfig class build_config = BuildConfig( max_batch_size=1, max_seq_len=1024, max_draft_len=63, speculative_decoding_mode=SpeculativeDecodingMode.MEDUSA) # The end user can customize the kv cache configuration with the KVCache class kv_cache_config = KvCacheConfig(enable_block_reuse=True) # The end user can customize the medusa decoding configuration by specifying the # medusa heads num and medusa choices with the MedusaDecodingConfig class speculative_config = MedusaDecodingConfig(num_medusa_heads=4, medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], \ [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], \ [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], \ [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], \ [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], \ [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]] ) llm = LLM(model="lmsys/vicuna-7b-v1.3", speculative_model="FasterDecoding/medusa-vicuna-7b-v1.3", build_config=build_config, kv_cache_config=kv_cache_config, speculative_config=speculative_config) outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") if __name__ == '__main__': main()