# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import shutil import sys import tempfile from pathlib import Path from typing import Optional, Tuple, Union import pytest import yaml from defs.common import convert_weights from defs.trt_test_alternative import (check_call, check_call_negative_test, check_output, exists, makedirs) from .common import (PluginOptions, convert_weights, prune_checkpoint, quantize_data, refit_model, venv_check_call) from .conftest import (llm_models_root, skip_nvlink_inactive, skip_post_blackwell, skip_pre_ada, skip_pre_blackwell, skip_pre_hopper, tests_path, unittest_path) sys.path.append(os.path.join(str(tests_path()), '/../examples/apps')) def test_gpt3_175b_1layers_build_only(llm_root, llm_venv, engine_dir): "Build GPT-3 175B: 96 layer w/ plugins" example_root = os.path.join(llm_root, "examples", "models", "core", "gpt") engine_dir = os.path.join(engine_dir, "gpt-175-96layers-build-only") dtype = 'float16' convert_cmd = [ f"{example_root}/../../../generate_checkpoint_config.py", f"--output_path={engine_dir}/ckpt_config.json", "--architecture=GPTForCausalLM", f"--dtype={dtype}", "--num_hidden_layers=1", "--num_attention_heads=96", "--hidden_size=12288", "--vocab_size=51200", "--tp_size=8" ] venv_check_call(llm_venv, convert_cmd) print("Building engines...") build_cmd = [ "trtllm-build", f"--model_config={engine_dir}/ckpt_config.json", f"--output_dir={engine_dir}", "--max_batch_size=256", "--max_input_len=200", "--max_seq_len=400", "--max_beam_width=1", f"--gpt_attention_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) @pytest.mark.parametrize("additional_build_option", ["", "--multi_query_mode"], ids=lambda x: x.strip("-")) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_gpt_fp32(llm_root, llm_venv, additional_build_option, use_py_session, engine_dir): example_root = os.path.join(llm_root, "examples", "models", "core", "gpt") engine_dir = os.path.join(engine_dir, "gpt2") dtype = 'float32' convert_cmd = [ f"{example_root}/../../../generate_checkpoint_config.py", f"--output_path={engine_dir}/ckpt_config.json", "--architecture=GPTForCausalLM", f"--dtype={dtype}", "--num_hidden_layers=2", "--num_attention_heads=16", "--hidden_size=1024", "--vocab_size=51200" ] if 'multi_query_mode' in additional_build_option: convert_cmd.append("--num_key_value_heads=1") venv_check_call(llm_venv, convert_cmd) print("Building engines...") build_cmd = [ "trtllm-build", f"--model_config={engine_dir}/ckpt_config.json", f"--output_dir={engine_dir}", "--max_batch_size=256", "--max_input_len=200", "--max_seq_len=400", "--max_beam_width=1", f"--gpt_attention_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Running inference...") run_cmd = [ f"{example_root}/../../../run.py", "--max_output_len=1", f"--engine_dir={engine_dir}" ] if use_py_session: run_cmd.extend(["--use_py_session"]) venv_check_call(llm_venv, run_cmd) @pytest.mark.parametrize("prune", [False, True], ids=["", "prune"]) @pytest.mark.parametrize( "additional_build_option", ["", "remove_input_padding", "quantization int8_sq_per_tensor"], ids=lambda x: x.replace(" ", "_")) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_llama_e2e(llama_example_root, llama_tokenizer_model_root, llm_venv, cmodel_dir, engine_dir, additional_build_option, use_py_session, prune): model_name = 'llama-e2e' model_dir = convert_weights( llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llama_tokenizer_model_root, ) unpruned_model_dir = model_dir if prune: print("Pruning checkpoint...") model_dir = prune_checkpoint(llm_venv, model_dir) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--max_beam_width=4", f"--max_batch_size={1}", f"--max_input_len={1024}", f"--gpt_attention_plugin=float16", f"--gemm_plugin=float16" ] print("Build engines...") if additional_build_option == "": build_cmd += [f"--remove_input_padding=disable"] elif additional_build_option == "remove_input_padding": build_cmd += [f"--remove_input_padding=enable"] else: build_cmd += [f"--{additional_build_option}"] if prune: build_cmd.append("--strip_plan") build_cmd.extend(PluginOptions("float16", None, "float16", None).to_args()) check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) if prune: print("Refitting engine...") engine_dir = refit_model(llm_venv, engine_dir, unpruned_model_dir) print("Run inference...") run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=1", f"--tokenizer_dir={llama_tokenizer_model_root}", "--log_level=verbose", f"--engine_dir={engine_dir}", ] if use_py_session: run_cmd.extend(["--use_py_session"]) venv_check_call(llm_venv, run_cmd) @pytest.mark.parametrize("prune", [False, True], ids=["", "prune"]) @pytest.mark.parametrize("enable_fp8", [False, True], ids=["", "enable_fp8"]) @pytest.mark.parametrize("additional_build_option", ["", "remove_input_padding"], ids=lambda x: x) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_mistral_e2e(llama_example_root, llama_tokenizer_model_root, llm_venv, cmodel_dir, engine_dir, enable_fp8, additional_build_option, use_py_session, prune): model_name = 'mistral-e2e' if enable_fp8: model_dir = quantize_data(llm_venv=llm_venv, example_root=llama_example_root, model_dir=llama_tokenizer_model_root, dtype='float16', qformat='fp8', quantize_dir=cmodel_dir, kv_cache_dtype='fp8', calib_size=32) else: model_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llama_tokenizer_model_root, enable_fp8=enable_fp8) unpruned_model_dir = model_dir if prune: print("Pruning checkpoint...") model_dir = prune_checkpoint(llm_venv, model_dir) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--max_batch_size=1", f"--max_input_len=1024", f"--max_num_tokens=1024", f"--max_beam_width=4", f"--gemm_plugin=float16", ] print("Build engines...") if additional_build_option == "": if not enable_fp8: build_cmd += [f"--remove_input_padding=disable"] elif additional_build_option == "remove_input_padding": build_cmd += [f"--remove_input_padding=enable"] else: build_cmd += [f"--{additional_build_option}"] if enable_fp8: build_cmd.append("--use_fp8_context_fmha=enable") else: build_cmd.append("--context_fmha=disable") build_cmd.append("--gpt_attention_plugin=float16") build_cmd.extend( PluginOptions("float16", None, "float16", None).to_args()) if prune: build_cmd.append("--strip_plan") os.path.join(cmodel_dir, ".internal_trt.cfg") check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) if prune: print("Refitting engine...") engine_dir = refit_model(llm_venv, engine_dir, unpruned_model_dir) print("Run inference...") run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=1", f"--tokenizer_dir={llama_tokenizer_model_root}", "--log_level=verbose", "--max_attention_window_size=5", f"--engine_dir={engine_dir}", ] if use_py_session: run_cmd.extend(["--use_py_session"]) venv_check_call(llm_venv, run_cmd) def trtllm_bench_prolog( llm_root, llm_venv, engine_dir: Optional[str], model_subdir, model_name: str, quant: str, streaming: bool, skip_engine_build: bool = False ) -> Union[Tuple[Path, Path, Path], Path]: ''' Optionally build engine and generate dataset for benchmark. Returns: Union[Tuple[Path, Path, Path], Path]: - Tuple containing model_path, engine_path, and dataset_path. - A single dataset_path object if skip_engine_build is True. ''' llm_models = llm_models_root() # skip when llm_models_root is None if llm_models is None: return model_path = Path(llm_models, model_subdir).absolute() engine_path = None quant_name = quant if quant is not None else "FP16" stream_mode = "streaming" if streaming else "non-streaming" benchmark_name = f"trtllm-bench-sanity-{quant_name}-{stream_mode}" benchmark_name += "-pytorch-backend" if skip_engine_build else benchmark_name dataset_tool = Path(llm_root, "benchmarks", "cpp", "prepare_dataset.py") work_dir = Path(tempfile.TemporaryDirectory().name ) if skip_engine_build else Path(engine_dir) dataset_path = Path(work_dir, f"{benchmark_name}.txt") # Clean up an existing directory if it exists shutil.rmtree(work_dir, ignore_errors=True) # Generate a small dataset to run a test. work_dir.mkdir(parents=True) dataset_output = llm_venv.run_cmd( [ f"{dataset_tool.resolve()}", "--stdout", "--tokenizer", f"{model_path}", "token-norm-dist", "--input-mean", "128", "--output-mean", "128", "--input-stdev", "0", "--output-stdev", "0", "--num-requests", "10", ], caller=check_output, ) # Grab the stdout and write it to a dataset file for passing to suite. with open(dataset_path, "w") as dataset: dataset.write(dataset_output) if not skip_engine_build: build_cmd = \ f"trtllm-bench " \ f"--model {model_name} " \ f"--model_path {model_path} " \ f"--workspace {work_dir} " \ f"build --tp_size 1" if quant is not None: build_cmd = f"{build_cmd} --quantization {quant}" build_cmd = f"{build_cmd} --dataset {dataset_path}" build_output = check_output(build_cmd, shell=True) for line in build_output.split("\n")[::-1]: if line.startswith("ENGINE SAVED:"): engine_path = Path(line.split(":")[1]) break return model_path, engine_path, dataset_path @pytest.fixture def temp_extra_llm_api_options_file(request): if request.node.callspec.params['use_extra_config']: temp_dir = tempfile.gettempdir() temp_file_path = os.path.join(temp_dir, "extra_llm_api_options.yaml") try: extra_llm_api_options_dict = { "enable_chunked_prefill": False, "kv_cache_config": { "enable_block_reuse": False, "max_tokens": 40000 } } if request.node.callspec.params['pytorch_backend_config']: extra_llm_api_options_dict["pytorch_backend_config"] = { "enable_overlap_scheduler": True, "use_cuda_graph": True, "cuda_graph_batch_sizes": [1, 2, 3], } with open(temp_file_path, 'w') as f: yaml.dump(extra_llm_api_options_dict, f) yield temp_file_path finally: if os.path.exists(temp_file_path): os.remove(temp_file_path) else: assert not request.node.callspec.params['pytorch_backend_config'] yield None @pytest.mark.parametrize("model_subdir", [ "llama-3.1-model/Meta-Llama-3.1-8B", ], ids=lambda x: x.strip("-")) @pytest.mark.parametrize( "model_name", [ "meta-llama/Llama-3.1-8B", ], ) @pytest.mark.parametrize("quant", [None, "FP8"], ids=["FP16", "FP8"]) @pytest.mark.parametrize("streaming", ["", "--streaming"], ids=["non-streaming", "streaming"]) @pytest.mark.parametrize("use_extra_config", [True, False], ids=["extra_config", ""]) @pytest.mark.parametrize("pytorch_backend_config", [False], ids=[""]) def test_trtllm_bench_sanity(llm_root, llm_venv, engine_dir, model_subdir, model_name, quant, streaming, use_extra_config, pytorch_backend_config, temp_extra_llm_api_options_file): ''' sanity check on the new benchmark script to make sure it works - meta-llama/Llama-3.1-8B for baseline - fp16 and fp8 to test quantization ''' model_path, engine_path, dataset_path = trtllm_bench_prolog( llm_root, llm_venv, engine_dir, model_subdir, model_name, quant, "streaming" in streaming) benchmark_cmd = \ f"trtllm-bench --model {model_name} --model_path {model_path} " \ f"throughput --engine_dir {engine_path} " \ f"--dataset {dataset_path} {streaming}" assert not pytorch_backend_config if use_extra_config: benchmark_cmd += f" --extra_llm_api_options {temp_extra_llm_api_options_file}" check_call(benchmark_cmd, shell=True) @pytest.mark.parametrize( "model_name, llama_model_root, use_extra_config, pytorch_backend_config", [('meta-llama/Llama-3.1-8B', 'llama-3.1-8b', False, False), pytest.param('meta-llama/Llama-3.1-8B', 'llama-3.1-8b-instruct-hf-fp8', True, False, marks=skip_pre_hopper), pytest.param('meta-llama/Llama-3.1-8B', 'llama-3.1-8b-instruct-hf-fp8', True, True, marks=skip_pre_hopper), pytest.param('meta-llama/Llama-3.1-8B', 'llama-3.1-8b-hf-nvfp4', False, False, marks=skip_pre_blackwell)], indirect=['llama_model_root']) def test_trtllm_bench_pytorch_backend_sanity(llm_root, llm_venv, llama_model_root, model_name, use_extra_config, pytorch_backend_config, temp_extra_llm_api_options_file): ''' sanity check on latency benchmark for LLM API with PyTorch backend ''' model_path, _, dataset_path = trtllm_bench_prolog(llm_root, llm_venv, None, llama_model_root, model_name, False, False, skip_engine_build=True) benchmark_cmd = \ f"trtllm-bench --model {model_name} --model_path {model_path} " \ f"throughput " \ f"--dataset {dataset_path} --backend 'pytorch'" if use_extra_config: benchmark_cmd += f" --extra_llm_api_options {temp_extra_llm_api_options_file}" check_call(benchmark_cmd, shell=True) def test_trtllm_bench_mgmn(llm_root, llm_venv): model_name = "meta-llama/Llama-3.1-8B" llama_model_dir = Path( llm_models_root()) / "llama-3.1-model/Llama-3.1-8B-Instruct" dataset_path = trtllm_bench_prolog(llm_root, llm_venv, engine_dir=None, model_subdir=llama_model_dir, model_name=model_name, quant=None, streaming=False, skip_engine_build=True) benchmark_cmd = \ f"mpirun -n 2 trtllm-llmapi-launch trtllm-bench --model {model_name} " \ f"--model_path {llama_model_dir} " \ f"throughput " \ f"--dataset {str(dataset_path)} --backend pytorch --tp 2" check_call(benchmark_cmd, shell=True) @pytest.mark.parametrize("model_subdir", [ "llama-3.1-model/Meta-Llama-3.1-8B", ], ids=lambda x: x.strip("-")) @pytest.mark.parametrize( "model_name", [ "meta-llama/Llama-3.1-8B", ], ) @pytest.mark.parametrize("quant", [None, "FP8"], ids=["FP16", "FP8"]) def test_trtllm_bench_latency_sanity(llm_root, llm_venv, engine_dir, model_subdir, model_name, quant): ''' sanity check on the new benchmark script to make sure it works - meta-llama/Llama-3.1-8B for baseline - fp16 and fp8 to test quantization ''' model_path, engine_path, dataset_path = trtllm_bench_prolog(llm_root, llm_venv, engine_dir, model_subdir, model_name, quant, streaming=True) benchmark_cmd = \ f"trtllm-bench --model {model_path} latency --engine_dir {engine_path} " \ f"--dataset {dataset_path}" check_call(benchmark_cmd, shell=True) @pytest.mark.parametrize( "model_name", [ "meta-llama/Llama-3.1-8B", ], ) def test_trtllm_bench_help_sanity(model_name): ''' Sanity check that the options are defined properly by printing out help ''' check_call("trtllm-bench --help", shell=True) check_call(f"trtllm-bench --model {model_name} build --help", shell=True) check_call(f"trtllm-bench --model {model_name} throughput --help", shell=True) check_call(f"trtllm-bench --model {model_name} latency --help", shell=True) @pytest.mark.parametrize("request_rate", [False, True], ids=["", "enable_request_rate"]) @pytest.mark.parametrize("concurrency", [False, True], ids=["", "enable_concurrency"]) def test_trtllm_bench_request_rate_and_concurrency(llm_root, llm_venv, engine_dir, request_rate, concurrency): ''' sanity check on the trtllm-bench new request rate and concurrency API ''' model_subdir = "llama-3.1-model/Meta-Llama-3.1-8B" model_name = "meta-llama/Llama-3.1-8B" model_path, engine_path, dataset_path = trtllm_bench_prolog(llm_root, llm_venv, engine_dir, model_subdir, model_name, quant=None, streaming=False) benchmark_cmd = \ f"trtllm-bench --model {model_path} throughput --engine_dir {engine_path} " \ f"--dataset {dataset_path}" if request_rate: benchmark_cmd += " --request_rate 100" if concurrency: benchmark_cmd += " --concurrency 100" print(f"cmd: {benchmark_cmd}") if request_rate and concurrency: # negative test, request rate and concurrency should not be turned on at the same time check_call_negative_test(benchmark_cmd, shell=True) else: check_call(benchmark_cmd, shell=True) @pytest.mark.parametrize("model_subdir", [ "llama-3.1-model/Meta-Llama-3.1-8B", ], ids=lambda x: x.strip("-")) @pytest.mark.parametrize( "model_name", [ "meta-llama/Llama-3.1-8B", ], ) @pytest.mark.parametrize("streaming", [True, False], ids=["non-streaming", "streaming"]) @pytest.mark.parametrize("backend", [None, "pytorch"], ids=["TRT", "PyTorch"]) def test_trtllm_bench_iteration_log(llm_root, llm_venv, model_name, model_subdir, streaming, backend): ''' Test the iteration log functionality with necessary options ''' iteration_log = None engine_dir = None try: skip_engine_build = backend is not None iteration_log = tempfile.mkstemp(dir="/tmp", suffix=".txt")[1] if not skip_engine_build: engine_dir = tempfile.mkdtemp(dir="/tmp") model_path, engine_path, dataset_path = trtllm_bench_prolog( llm_root, llm_venv, engine_dir, model_subdir, model_name, quant=None, skip_engine_build=skip_engine_build, streaming=streaming) benchmark_cmd = \ f"trtllm-bench --model {model_path} throughput " \ f"--dataset {dataset_path} --iteration_log {iteration_log}" if streaming: benchmark_cmd += " --streaming" if skip_engine_build: assert engine_path is None, "Engine path should be None" benchmark_cmd += f" --backend {backend}" else: assert engine_path is not None, "Engine path should not be None" benchmark_cmd += f" --engine_dir {engine_path}" check_call(benchmark_cmd, shell=True) assert os.path.exists( iteration_log ), f"Iteration log file {iteration_log} was not created." if os.path.getsize(iteration_log) == 0: raise AssertionError( f"Iteration log file {iteration_log} is empty.") finally: if iteration_log: shutil.rmtree(iteration_log, ignore_errors=True) if engine_dir: shutil.rmtree(engine_dir, ignore_errors=True) @pytest.mark.parametrize("model_name", [ "gpt_350m", "gpt_350m_sq_per_tensor", "llama_70b", "bert_base", "falcon_40b", "t5_base", "roberta_base" ], ids=lambda x: x.strip("-")) def test_benchmark_sanity(llm_root, llm_venv, model_name, engine_dir): ''' sanity check on the benchmark script to make sure it works - gpt_350m for gpt baseline. - gpt_350m_sq_per_tensor for testing SQ - llama_70b for GQA (num_kv_heads < num_heads) in gpt benchmark script. - bert_base for bert baseline. - t5_base for t5 baseline. ''' build_script_root = os.path.join(llm_root, "tests/integration/defs/perf") benchmark_root = os.path.join(llm_root, "benchmarks", "python") engine_dir = os.path.join(engine_dir, model_name, "benchmark-sanity") if not exists(engine_dir): makedirs(engine_dir) # max batch size 256 (default) is OOM on A30, changing to a smaller one to just test sanity build_args = f"-m {model_name} --force_num_layer_1 --max_input_len 512 --max_batch_size 8" # test OOTB path in one of the model if model_name == "gpt_350m": build_args += " --mode ootb" build_cmd = f'{build_script_root}/build.py --output_dir {engine_dir} {build_args}'.split( " ") benchmark_args = f"--batch_size 1;2 --duration 0 --num_runs 1" if 'bert' in model_name: benchmark_args += " --input_len 20;60" benchmark_args += " --m enc" else: benchmark_args += " --input_output_len 20,60;60,20" if 't5' in model_name or 'roberta' in model_name: benchmark_args += " --m enc-dec" load_cmd = f'{benchmark_root}/benchmark.py --engine_dir {engine_dir} {benchmark_args}'.split( " ") venv_check_call(llm_venv, build_cmd) venv_check_call(llm_venv, load_cmd) @skip_pre_ada @pytest.mark.parametrize("model_name", ["llama_7b", "gptj_6b", "gpt_350m", "falcon_40b"], ids=lambda x: x.strip("-")) def test_benchmark_sanity_enable_fp8(llm_root, llm_venv, model_name, engine_dir): ''' sanity check on the benchmark script to make sure it works ''' build_script_root = os.path.join(llm_root, "tests/integration/defs/perf") benchmark_root = os.path.join(llm_root, "benchmarks", "python") engine_dir = os.path.join(engine_dir, model_name, "benchmark-sanity") if not exists(engine_dir): makedirs(engine_dir) build_args = f"-m {model_name} --force_num_layer_1 --quantization fp8" build_cmd = f'{build_script_root}/build.py --output_dir {engine_dir} {build_args}'.split( " ") benchmark_args = f"--batch_size 1;2 --duration 0 --num_runs 1 --quantization fp8" if 'bert' in model_name: benchmark_args += " --input_len 20;60" benchmark_args += " --m enc" else: benchmark_args += " --input_output_len 20,60;60,20" load_cmd = f'{benchmark_root}/benchmark.py --engine_dir {engine_dir} {benchmark_args}'.split( " ") venv_check_call(llm_venv, build_cmd) venv_check_call(llm_venv, load_cmd) def test_chatglm_6b_sanity(chatglm_6b_example_root, llm_venv, cmodel_dir, engine_dir): llm_models = llm_models_root() # skip when llm_models_root is None if llm_models is None: return # Use `chatglm_6b_example_root` as temporary tokenizer path since we need replace the `tokenization_chatglm.py` model_path = Path(llm_models) / 'chatglm-6b' for file in (list(model_path.glob("*.py")) + list(model_path.glob("*.json")) + list(model_path.glob("ice_text.model"))): print(file.name) if "tokenization_chatglm.py" in file.name: continue shutil.copy( file, chatglm_6b_example_root + "/chatglm-6b/tokenization_chatglm.py") dtype = 'float16' ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=chatglm_6b_example_root, cmodel_dir=cmodel_dir, model='chatglm-6b', model_path=str(model_path), data_type=dtype) build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--max_beam_width={1}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", "--context_fmha=disable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) run_cmd = [ f"{chatglm_6b_example_root}/../run.py", f"--engine_dir={engine_dir}", f"--tokenizer_dir={chatglm_6b_example_root}", "--max_output_len=10", ] venv_check_call(llm_venv, run_cmd) def test_chatglm2_6b_sanity(chatglm2_6b_example_root, llm_venv, cmodel_dir, engine_dir): llm_models = llm_models_root() # skip when llm_models_root is None if llm_models is None: return dtype = 'float16' ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=chatglm2_6b_example_root, cmodel_dir=cmodel_dir, model='chatglm2-6b', model_path=f'{llm_models}/chatglm2-6b', data_type=dtype) build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--max_beam_width={1}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) run_cmd = [ f"{chatglm2_6b_example_root}/../run.py", f"--engine_dir={engine_dir}", f"--tokenizer_dir={llm_models}/chatglm2-6b", "--max_output_len=10" ] venv_check_call(llm_venv, run_cmd) def test_chatglm3_6b_sanity(chatglm3_6b_example_root, llm_venv, cmodel_dir, engine_dir): llm_models = llm_models_root() # skip when llm_models_root is None if llm_models is None: return dtype = 'float16' ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=chatglm3_6b_example_root, cmodel_dir=cmodel_dir, model='chatglm3-6b', model_path=f'{llm_models}/chatglm3-6b', data_type=dtype) build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--max_beam_width={1}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) run_cmd = [ f"{chatglm3_6b_example_root}/../run.py", f"--engine_dir={engine_dir}", f"--tokenizer_dir={llm_models}/chatglm3-6b", "--max_output_len=10" ] venv_check_call(llm_venv, run_cmd) @pytest.mark.parametrize("data_type", ["float16", "bfloat16"]) def test_glm_10b_sanity(glm_10b_example_root, llm_venv, data_type, cmodel_dir, engine_dir): llm_models = llm_models_root() # skip when llm_models_root is None if llm_models is None: return dtype = 'float16' ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=glm_10b_example_root, cmodel_dir=cmodel_dir, model='glm-10b', model_path=f'{llm_models}/glm-10b', data_type=dtype) build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", f"--max_batch_size={8}", f"--max_input_len={924}", f"--max_seq_len={1024}", f"--max_beam_width={1}", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", "--context_fmha=disable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) run_cmd = [ f"{glm_10b_example_root}/../run.py", f"--engine_dir={engine_dir}", f"--tokenizer_dir={llm_models}/glm-10b", "--max_output_len=10" ] venv_check_call(llm_venv, run_cmd) @pytest.mark.parametrize("query_type", ["mha", "mqa", "gqa"]) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) @pytest.mark.parametrize("gpu_weight_percent", [-1, 0, 0.8], ids=["", "gpu_percent_0", "gpu_percent_0_8"]) def test_falcon_e2e(falcon_example_root, llm_venv, engine_dir, query_type, use_py_session, gpu_weight_percent): print(f"Build engines... query_type: {query_type}") dtype = "float16" config = { 'architecture': 'FalconForCausalLM', 'dtype': dtype, 'num_hidden_layers': 2, 'num_attention_heads': 16, 'num_key_value_heads': 16, 'hidden_size': 4096, 'vocab_size': 65024, 'position_embedding_type': 'rope_gpt_neox', 'max_position_embeddings': 2048, 'hidden_act': 'gelu', 'bias': False, 'parallel_attention': False, 'new_decoder_architecture': False, } if query_type == 'mha': config['position_embedding_type'] = 'alibi_with_scale' elif query_type == 'mqa': config['num_key_value_heads'] = 1 config['parallel_attention'] = True elif query_type == 'gqa': config['num_key_value_heads'] = 4 config['new_decoder_architecture'] = True # Save the dummy-weight checkpoint config.json to engine_dir if not os.path.exists(engine_dir): os.makedirs(engine_dir) ckpt_config_path = os.path.join(engine_dir, 'ckpt_config.json') with open(ckpt_config_path, 'w') as f: json.dump(config, f, indent=4) build_cmd = [ "trtllm-build", f"--model_config={ckpt_config_path}", f"--output_dir={engine_dir}", "--log_level=verbose", f"--max_batch_size={1}", f"--max_input_len={1024}", f"--output_dir={engine_dir}", "--log_level=verbose", ] if gpu_weight_percent == -1: build_cmd.append(f"--gemm_plugin={dtype}") else: build_cmd.extend(["--gemm_plugin=disable", "--weight_streaming"]) if query_type in ('mqa', 'gqa'): build_cmd.extend([f"--gpt_attention_plugin={dtype}"]) check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run inference...") run_cmd = [ f"{falcon_example_root}/../run.py", "--max_output_len=2", "--log_level=verbose", f"--engine_dir={engine_dir}", ] if use_py_session: run_cmd.extend(["--use_py_session"]) if gpu_weight_percent != -1: run_cmd.append(f"--gpu_weights_percent={gpu_weight_percent}") venv_check_call(llm_venv, run_cmd) @pytest.mark.parametrize("enable_fp8", [False, True], ids=["enable_fp8", "disable_fp8"]) @pytest.mark.parametrize("enable_ibf", [False, True], ids=["enable_ibf", "disable_ibf"]) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_falcon_gqa_e2e(falcon_example_root, llm_venv, engine_dir, enable_fp8, enable_ibf, use_py_session): dtype = "float16" config = { 'architecture': 'FalconForCausalLM', 'dtype': dtype, 'num_hidden_layers': 2, 'num_attention_heads': 16, 'num_key_value_heads': 4, 'hidden_size': 4096, 'vocab_size': 65024, 'position_embedding_type': 'rope_gpt_neox', 'max_position_embeddings': 2048, 'hidden_act': 'gelu', 'bias': False, 'parallel_attention': False, 'new_decoder_architecture': True, } if enable_fp8: config['quantization'] = { 'quant_algo': 'FP8', 'kv_cache_quant_algo': 'FP8' } # Save the dummy-weight checkpoint config.json to engine_dir if not os.path.exists(engine_dir): os.makedirs(engine_dir) ckpt_config_path = os.path.join(engine_dir, 'ckpt_config.json') with open(ckpt_config_path, 'w') as f: json.dump(config, f, indent=4) build_cmd = [ "trtllm-build", f"--model_config={ckpt_config_path}", f"--output_dir={engine_dir}", "--log_level=verbose", f"--gemm_plugin={dtype}", f"--gpt_attention_plugin={dtype}", "--max_batch_size=8" ] if enable_ibf: build_cmd.extend( ["--remove_input_padding=enable", "--paged_kv_cache=enable"]) check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run inference...") run_cmd = [ f"{falcon_example_root}/../run.py", "--max_output_len=2", "--log_level=verbose", f"--engine_dir={engine_dir}", ] if use_py_session: run_cmd.extend(["--use_py_session"]) venv_check_call(llm_venv, run_cmd) def test_mistral_large_hidden_vocab_size(llama_example_root, llm_venv, llama_tokenizer_model_root, engine_dir): """RCCA https://nvbugs/4753548""" config = { "architecture": "LlamaForCausalLM", "dtype": "float16", "vocab_size": 131072, "hidden_size": 16384, "num_hidden_layers": 1, "num_attention_heads": 96, "hidden_act": "silu", "logits_dtype": "float32", "norm_epsilon": 1e-06, "position_embedding_type": "rope_gpt_neox", "max_position_embeddings": 131072, "num_key_value_heads": 8, "intermediate_size": 36864, "head_size": 128, } # Save the dummy-weight checkpoint config.json to engine_dir if not os.path.exists(engine_dir): os.makedirs(engine_dir) ckpt_config_path = os.path.join(engine_dir, 'ckpt_config.json') with open(ckpt_config_path, 'w') as f: json.dump(config, f, indent=4) build_cmd = [ "trtllm-build", f"--model_config={ckpt_config_path}", f"--output_dir={engine_dir}", "--max_input_len=8096", "--max_seq_len=52488", "--max_num_tokens=52488", "--gemm_plugin=float16", "--gpt_attention_plugin=float16", "--paged_kv_cache=enable", "--remove_input_padding=enable", "--max_batch_size=32", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run inference...") run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=20", f"--engine_dir={engine_dir}", f"--tokenizer_dir={llama_tokenizer_model_root}", ] venv_check_call(llm_venv, run_cmd) def test_trtllm_serve_example(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "serve")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_trtllm_serve_example.py")]) def test_trtllm_serve_multimodal_example(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "serve")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd([ "-m", "pytest", str(test_root / "_test_trtllm_serve_multimodal_example.py") ]) def test_openai_misc_example(llm_root, llm_venv): test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd(["-m", "pytest", str(test_root / "_test_openai_misc.py")]) def test_openai_completions_example(llm_root, llm_venv): test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_openai_completions.py")]) def test_openai_chat_example(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd(["-m", "pytest", str(test_root / "_test_openai_chat.py")]) def test_openai_reasoning(llm_root, llm_venv): test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_openai_reasoning.py")]) def test_openai_chat_multimodal_example(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_openai_chat_multimodal.py")]) def test_openai_chat_structural_tag_example(llm_venv): test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pytest", str(test_root / "_test_openai_chat_structural_tag.py") ]) @pytest.mark.skip_less_device(2) @pytest.mark.skip_less_device_memory(40000) def test_openai_multi_chat_example(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_openai_multi_chat.py")]) @skip_nvlink_inactive @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) def test_openai_consistent_chat(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd( ["-m", "pytest", str(test_root / "_test_openai_consistent_chat.py")]) @skip_nvlink_inactive @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) def test_openai_multinodes_chat_tp16pp1(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd([ "-m", "pytest", "-k", "tp16pp1", str(test_root / "_test_openai_multi_nodes.py") ]) @skip_nvlink_inactive @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) def test_openai_multinodes_chat_tp8pp2(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "apps")) test_root = unittest_path() / "llmapi" / "apps" llm_venv.run_cmd([ "-m", "pip", "install", "-r", os.path.join(example_root, "requirements.txt") ]) llm_venv.run_cmd([ "-m", "pytest", "-k", "tp8pp2", str(test_root / "_test_openai_multi_nodes.py") ]) def test_build_time_benchmark_sanity(llm_root, llm_venv): temp = tempfile.TemporaryDirectory() llm_venv.run_cmd([ str(Path(llm_root) / "tests/microbenchmarks/build_time_dashboard.py"), '-m', temp.name, ]) # End of HLAPI examples ### Pivot-To-Python examples def test_ptp_quickstart(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "pytorch")) src = f"{llm_models_root()}/llama-3.1-model/Llama-3.1-8B-Instruct" dst = f"{llm_venv.get_working_directory()}/meta-llama/Llama-3.1-8B-Instruct" os.makedirs(os.path.dirname(dst), exist_ok=True) os.symlink(src, dst, target_is_directory=True) venv_check_call(llm_venv, [str(example_root / "quickstart.py")]) @pytest.mark.parametrize("model_name,model_path", [ ("Llama3.1-8B-BF16", "llama-3.1-model/Meta-Llama-3.1-8B"), ("Llama3.2-11B-BF16", "llama-3.2-models/Llama-3.2-11B-Vision"), ("Nemotron4_4B-BF16", "nemotron/Minitron-4B-Base"), ("Nemotron-H-8B", "Nemotron-H-8B-Base-8K"), pytest.param('Llama3.1-8B-NVFP4', 'nvfp4-quantized/Meta-Llama-3.1-8B', marks=skip_pre_blackwell), pytest.param('Llama3.1-8B-FP8', 'llama-3.1-model/Llama-3.1-8B-Instruct-FP8', marks=skip_pre_hopper), ]) def test_ptp_quickstart_advanced(llm_root, llm_venv, model_name, model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) if model_name == "Nemotron-H-8B": llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--disable_kv_cache_reuse", "--max_batch_size=8", "--model_dir", f"{llm_models_root()}/{model_path}", ]) else: llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--enable_chunked_prefill", "--model_dir", f"{llm_models_root()}/{model_path}", ]) @pytest.mark.parametrize("model_name,model_path", [ ("DeepSeek-V3-Lite-BF16", "DeepSeek-V3-Lite/bf16"), ]) def test_ptq_quickstart_advanced_mtp(llm_root, llm_venv, model_name, model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--use_cuda_graph", "--spec_decode_nextn", "1", # test 1 MTP module "--spec_decode_algo", "MTP", "--model_dir", f"{llm_models_root()}/{model_path}", ]) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.skip_less_device(8) @pytest.mark.parametrize("model_name,model_path", [ pytest.param('DeepSeek-V3', 'DeepSeek-V3', marks=skip_pre_hopper), ]) def test_ptp_quickstart_advanced_deepseek_v3_2nodes_8gpus( llm_root, llm_venv, model_name, model_path): # "RCCA https://nvbugs/5163844" print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--model_dir", f"{llm_models_root()}/{model_path}", "--moe_ep_size=8", "--tp_size=16", "--use_cuda_graph", "--kv_cache_fraction=0.5", "--max_batch_size=32", "--max_num_tokens=2048", "--kv_cache_enable_block_reuse", ]) @pytest.mark.parametrize("model_name,model_path,eagle_model_path", [ ("Llama-3.1-8b-Instruct", "llama-3.1-model/Llama-3.1-8B-Instruct", "EAGLE3-LLaMA3.1-Instruct-8B"), ]) def test_ptp_quickstart_advanced_eagle3(llm_root, llm_venv, model_name, model_path, eagle_model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--spec_decode_nextn", "4", "--spec_decode_algo", "eagle3", "--model_dir", f"{llm_models_root()}/{model_path}", "--eagle_model_dir", f"{llm_models_root()}/{eagle_model_path}", "--disable_kv_cache_reuse", ]) @skip_post_blackwell @pytest.mark.skip_less_device_memory(110000) @pytest.mark.skip_less_device(8) @pytest.mark.parametrize("model_name,model_path", [ pytest.param( 'DeepSeek-R1', 'DeepSeek-R1/DeepSeek-R1', marks=skip_pre_hopper), ]) def test_ptp_quickstart_advanced_deepseek_r1_8gpus(llm_root, llm_venv, model_name, model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--model_dir", f"{llm_models_root()}/{model_path}", "--moe_tp_size=1", "--moe_ep_size=8", "--tp_size=8", "--use_cuda_graph", "--enable_attention_dp", "--kv_cache_fraction=0.95", "--max_batch_size=1", "--max_seq_len=3000", "--disable_kv_cache_reuse", ]) @pytest.mark.skip_less_device_memory(110000) @pytest.mark.skip_less_device(8) @pytest.mark.parametrize("model_name,model_path", [ pytest.param( 'DeepSeek-R1', 'DeepSeek-R1/DeepSeek-R1', marks=skip_pre_hopper), ]) def test_relaxed_acceptance_quickstart_advanced_deepseek_r1_8gpus( llm_root, llm_venv, model_name, model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--model_dir", f"{llm_models_root()}/{model_path}", "--moe_tp_size=1", "--moe_ep_size=8", "--tp_size=8", "--use_cuda_graph", "--kv_cache_fraction=0.95", "--max_batch_size=1", "--max_seq_len=3000", "--disable_kv_cache_reuse", "--spec_decode_algo", "MTP", "--spec_decode_nextn", "5", "--use_relaxed_acceptance_for_thinking", "--relaxed_topk=10", "--relaxed_delta=0.5", ]) # TODO: relaxed acceptance is incompatible with attention dp # "--enable_attention_dp" @pytest.mark.skip_less_device_memory(80000) @pytest.mark.skip_less_device(8) @pytest.mark.parametrize("model_name,model_path", [ ("Llama3.1-70B-BF16", "llama-3.1-model/Meta-Llama-3.1-70B"), ("Mixtral-8x7B-BF16", "Mixtral-8x7B-v0.1"), pytest.param('Llama3.1-70B-FP8', 'llama-3.1-model/Llama-3.1-70B-Instruct-FP8', marks=skip_pre_hopper), pytest.param('Llama3.1-405B-FP8', 'llama-3.1-model/Llama-3.1-405B-Instruct-FP8', marks=skip_pre_hopper), pytest.param('Mixtral-8x7B-NVFP4', 'nvfp4-quantized/Mixtral-8x7B-Instruct-v0.1', marks=skip_pre_blackwell), pytest.param( 'Nemotron-Ultra-253B', 'nemotron-nas/Llama-3_1-Nemotron-Ultra-253B-v1', marks=[skip_pre_hopper, pytest.mark.skip_less_device_memory(140000)]), ]) def test_ptp_quickstart_advanced_8gpus(llm_root, llm_venv, model_name, model_path): print(f"Testing {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "pytorch")) llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--enable_overlap_scheduler", "--enable_chunked_prefill", "--model_dir", f"{llm_models_root()}/{model_path}", "--tp_size=8", ]) @skip_pre_blackwell def test_ptp_quickstart_advanced_mixed_precision(llm_root, llm_venv): example_root = Path(os.path.join(llm_root, "examples", "pytorch")) model_path = "Llama-3_1-8B-Instruct_fp8_nvfp4_hf" llm_venv.run_cmd([ str(example_root / "quickstart_advanced.py"), "--model_dir", f"{llm_models_root()}/{model_path}", ]) @pytest.mark.parametrize("modality", ["image", "video"]) @pytest.mark.parametrize("model_name,model_path", [ ("NVILA-8B-FP16", "vila/NVILA-8B"), ("llava-v1.6-mistral-7b", "llava-v1.6-mistral-7b-hf"), ("qwen2-vl-7b-instruct", "Qwen2-VL-7B-Instruct"), ("qwen2.5-vl-7b-instruct", "Qwen2.5-VL-7B-Instruct"), ]) def test_ptp_quickstart_multimodal(llm_root, llm_venv, model_name, model_path, modality): llm_venv.run_cmd( ['-m', 'pip', 'install', 'flash-attn==2.7.3', '--no-build-isolation']) example_root = Path(os.path.join(llm_root, "examples", "pytorch")) test_data_root = Path( os.path.join(llm_models_root(), "multimodals", "test_data")) print(f"Accuracy test {model_name} {modality} mode with example inputs.") accuracy_inputs = { "image": { "prompt": [ "Describe the natural environment in the image.", "Describe the object and the weather condition in the image.", "Describe the traffic condition on the road in the image.", ], "media": [ str(test_data_root / "seashore.png"), str(test_data_root / "inpaint.png"), str(test_data_root / "61.jpg"), ], }, "video": { "prompt": [ "Tell me what you see in the video briefly.", "Describe the scene in the video briefly.", ], "media": [ str(test_data_root / "OAI-sora-tokyo-walk.mp4"), str(test_data_root / "world.mp4"), ], }, } expected_keywords = { "NVILA-8B-FP16": { "image": [ ["stormy", "ocean", "waves", "clouds", "gray", "sky"], ["rock", "formation", "sunny", "sky", "clouds"], ["road", "busy", "car", "black", "blue"], ], "video": [ ["woman", "street", "night", "walking", "camera"], [ "stunning", "earth", "space", "planet", "curvature", "dark", "bright", "contrast", "illuminate" ], ], }, "llava-v1.6-mistral-7b": { "image": [ [ "ocean", "cloud", "waves", "white", "shore", "large", "dramatic", "breaking" ], ["mountain", "butte", "flat", "top", "sky"], ["highway", "vehicles", "traffic", "divider", "suburban"], ], }, "qwen2-vl-7b-instruct": { "image": [ ["ocean", "waves", "shore", "natural", "clouds", "turbulent"], [ "mountainous", "landscape", "rock", "peak", "weather", "steep" ], ["traffic", "vehicles", "moderate", "lanes", "road"], ], "video": [ ["city", "night", "lights", "jacket", "wet"], ["earth", "spinning", "black", "illuminated", "lights"], ], }, "qwen2.5-vl-7b-instruct": { "image": [ ["dramatic", "moody", "stormy", "turbulent", "wave"], [ "dome", "yosemite", "landmark", "sunny", "rock", "clouds", "pleasant" ], ["highway", "traffic", "vehicles", "bus", "police"], ], "video": [ ["woman", "neon", "night", "jacket", "wet"], ["earth", "rotating", "night", "lights", "cities"], ], }, } cmd = [ str(example_root / "quickstart_multimodal.py"), "--model_dir", f"{llm_models_root()}/{model_path}", "--modality", modality, "--prompt", *accuracy_inputs[modality]["prompt"], "--media", *accuracy_inputs[modality]["media"], ] # NOTE # Qwen2-VL and Qwen2-5-VL model need larger max_num_tokens. if model_name in ["qwen2-vl-7b-instruct", "qwen2.5-vl-7b-instruct" ] and modality == "video": cmd.append("--max_num_tokens=16384") output = llm_venv.run_cmd(cmd, caller=check_output) def parse_output(text): results = [] text_lists = re.split(r"\[\d+\] Prompt:", text) for item in text_lists: item = item.replace(os.linesep, "") while True: match = re.search(r"(Generated text: \'(.*?)\')", item, re.MULTILINE) if match is None: break _, end = match.span(1) results.append(match.group(2)) item = item[end:] return results match_ratio = 4.0 / 5 if model_name == "qwen2-vl-7b-instruct" and modality == "image": match_ratio = 4.0 / 6 for prompt_output, prompt_keywords in zip( parse_output(output), expected_keywords[model_name][modality]): matches = [ keyword in prompt_output.lower() for keyword in prompt_keywords ] obs_match_ratio = 1. * sum(matches) / len(matches) assert obs_match_ratio >= match_ratio, f"Incorrect output!\nGenerated \"{prompt_output}\"\nExpected keywords \"{prompt_keywords}\"\n Matched keywords: {matches}\n Observed match ratio {obs_match_ratio} below threshold {match_ratio}" print("All answers are correct!") if not any(name in model_name for name in ["NVILA"]): print(f"Skipping functionality test for {model_name}.") return print(f"Functionality test {model_name} {modality} mode.") functionality_inputs = { "image": { "prompt": "Describe the two images in detail.", "media": [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png", "https://huggingface.co/datasets/Sayali9141/traffic_signal_images/resolve/main/61.jpg", ], }, "video": { "prompt": "Tell me what you see in the video briefly.", "media": [ "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/OAI-sora-tokyo-walk.mp4", "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/world.mp4", ], }, } llm_venv.run_cmd([ str(example_root / "quickstart_multimodal.py"), "--model_dir", f"{llm_models_root()}/{model_path}", "--modality", modality, "--prompt", functionality_inputs[modality]["prompt"], "--media", *functionality_inputs[modality]["media"], ]) @pytest.mark.parametrize("model_name,model_path", [ ("BertForSequenceClassification", "bert/bert-base-uncased-yelp-polarity"), ]) @pytest.mark.parametrize("backend", ["VANILLA", "TRTLLM"]) def test_ptp_quickstart_bert(llm_root, llm_venv, model_name, model_path, backend): print(f"Testing {model_name} with {backend} backend.") import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer from tensorrt_llm import SamplingParams from tensorrt_llm._torch import LLM from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig from tensorrt_llm.sampling_params import SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] model_dir = f"{llm_models_root()}/{model_path}" # NOTE: Bert model return logits for now sampling_param = SamplingParams(max_tokens=32, return_context_logits=True) with LLM( model=model_dir, pytorch_backend_config=PyTorchConfig(attn_backend=backend), ) as llm: outputs = llm.generate(prompts, sampling_params=sampling_param) # Print the outputs. tllm_logits = [] for output in outputs: prompt = output.prompt tllm_logit = output.context_logits.cpu( )[:, 0] # drop vocab_size dimension. print(f"Prompt: {prompt!r}, Context logits: {tllm_logit}") tllm_logits += [tllm_logit] # Stack the output tllm_logits = torch.stack(tllm_logits) tokenizer = AutoTokenizer.from_pretrained(model_dir) # NOTE: assume the model is BertForSequenceClassification for now # load BertForSequenceClassification model hf_model = AutoModelForSequenceClassification.from_pretrained(model_dir) hf_model = hf_model.half().to(tllm_logits.device) with torch.inference_mode(): inputs = tokenizer(prompts, return_tensors="pt", padding='longest').to(hf_model.device) hf_outputs = hf_model(**inputs) hf_logit = hf_outputs.logits.float() torch.testing.assert_close(tllm_logits, hf_logit, rtol=1.5e-2, atol=1.5e-2) # If assert passes, print success message. print("Success: HF model logits match TRTLLM logits!") @pytest.mark.parametrize("model_name,model_path", [ ("Llama3.1-8B-BF16", "llama-3.1-model/Meta-Llama-3.1-8B"), ]) def test_ptp_star_attention_example(llm_root, llm_venv, model_name, model_path, star_attention_input_root): print(f"Testing {model_name}.") workspace = llm_venv.get_working_directory() example_root = Path(os.path.join(llm_root, "examples", "pytorch")) input_file = Path( os.path.join(star_attention_input_root, "test_star_attention_input.jsonl")) output_file = Path(os.path.join(workspace, "star_attention_output.jsonl")) llm_venv.run_cmd([ str(example_root / "star_attention.py"), "--model_path", f"{llm_models_root()}/{model_path}", "--sa_block_size=200", "--sa_anchor_size=200", f"--input_file={input_file}", f"--output_file={output_file}", ]) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("model_name,model_path", [ ("DeepSeek-R1-Distill-Qwen-7B", "DeepSeek-R1/DeepSeek-R1-Distill-Qwen-7B"), ]) def test_ptp_scaffolding(llm_root, llm_venv, model_name, model_path): print(f"Testing scaffolding {model_name}.") example_root = Path(os.path.join(llm_root, "examples", "scaffolding")) input_file = Path(os.path.join(example_root, "test.jsonl")) llm_venv.run_cmd([ str(example_root / "run_majority_vote_aime24.py"), "--model_dir", f"{llm_models_root()}/{model_path}", f"--jsonl_file={input_file}", "--threshold=0.5", ]) # End of Pivot-To-Python examples