# MIT License # # Copyright (c) 2020 Dan Hendrycks # Copyright (c) 2023 Deep Cognition and Language Research (DeCLaRe) Lab # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Not a contribution # Changes made by NVIDIA CORPORATION & AFFILIATES or otherwise documented as # NVIDIA-proprietary are not a contribution and subject to the following terms and conditions: # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Adapted from https://github.com/declare-lab/instruct-eval Helper script to compare TRTLLM and HF models on the MMLU dataset. Example usage: mkdir data; wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O data/mmlu.tar tar -xf data/mmlu.tar -C data && mv data/data data/mmlu python mmlu.py --hf_model_dir --engine_dir --test_trt_llm python mmlu.py --hf_model_dir --engine_dir --test_hf """ import argparse import os import random import numpy as np import pandas as pd import torch import torch.nn as nn from tqdm import tqdm from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig) from utils import (add_common_args, load_tokenizer, prepare_enc_dec_inputs, read_is_enc_dec, read_model_name) import tensorrt_llm from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner if PYTHON_BINDINGS: from tensorrt_llm.runtime import ModelRunnerCpp os.environ["TOKENIZERS_PARALLELISM"] = "false" DTYPE_STR_MAPPING = { "fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16, "float32": torch.float32, "float16": torch.float16, "bfloat16": torch.bfloat16, } RAND_SEED = 1234 def get_choices(): return ["A", "B", "C", "D"] def get_subcategories(): return { "abstract_algebra": ["math"], "anatomy": ["health"], "astronomy": ["physics"], "business_ethics": ["business"], "clinical_knowledge": ["health"], "college_biology": ["biology"], "college_chemistry": ["chemistry"], "college_computer_science": ["computer science"], "college_mathematics": ["math"], "college_medicine": ["health"], "college_physics": ["physics"], "computer_security": ["computer science"], "conceptual_physics": ["physics"], "econometrics": ["economics"], "electrical_engineering": ["engineering"], "elementary_mathematics": ["math"], "formal_logic": ["philosophy"], "global_facts": ["other"], "high_school_biology": ["biology"], "high_school_chemistry": ["chemistry"], "high_school_computer_science": ["computer science"], "high_school_european_history": ["history"], "high_school_geography": ["geography"], "high_school_government_and_politics": ["politics"], "high_school_macroeconomics": ["economics"], "high_school_mathematics": ["math"], "high_school_microeconomics": ["economics"], "high_school_physics": ["physics"], "high_school_psychology": ["psychology"], "high_school_statistics": ["math"], "high_school_us_history": ["history"], "high_school_world_history": ["history"], "human_aging": ["health"], "human_sexuality": ["culture"], "international_law": ["law"], "jurisprudence": ["law"], "logical_fallacies": ["philosophy"], "machine_learning": ["computer science"], "management": ["business"], "marketing": ["business"], "medical_genetics": ["health"], "miscellaneous": ["other"], "moral_disputes": ["philosophy"], "moral_scenarios": ["philosophy"], "nutrition": ["health"], "philosophy": ["philosophy"], "prehistory": ["history"], "professional_accounting": ["other"], "professional_law": ["law"], "professional_medicine": ["health"], "professional_psychology": ["psychology"], "public_relations": ["politics"], "security_studies": ["politics"], "sociology": ["culture"], "us_foreign_policy": ["politics"], "virology": ["health"], "world_religions": ["philosophy"], } def get_categories(): return { "STEM": [ "physics", "chemistry", "biology", "computer science", "math", "engineering", ], "humanities": ["history", "philosophy", "law"], "social sciences": [ "politics", "culture", "economics", "geography", "psychology", ], "other (business, health, misc.)": ["other", "business", "health"], } def format_subject(subject): line = subject.split("_") s = "" for entry in line: s += " " + entry return s def format_example(df, idx, include_answer=True): prompt = df.iloc[idx, 0] k = df.shape[1] - 2 for j in range(k): prompt += "\n{}. {}".format(get_choices()[j], df.iloc[idx, j + 1]) prompt += "\nAnswer:" if include_answer: prompt += " {}\n\n".format(df.iloc[idx, k + 1]) return prompt def gen_prompt(train_df, subject, k=-1): prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format( format_subject(subject)) if k == -1: k = train_df.shape[0] for i in range(k): prompt += format_example(train_df, i) return prompt def evaluate(args, subject, pipeline, dev_df, test_df): rank = tensorrt_llm.mpi_rank() cors = [] all_probs = [] for i in range(test_df.shape[0]): if i >= args.max_ite: break # get prompt and make sure it fits k = args.ntrain prompt_end = format_example(test_df, i, include_answer=False) train_prompt = gen_prompt(dev_df, subject, k) prompt = train_prompt + prompt_end while not pipeline.check_valid_length(prompt) and k > 0: k -= 1 train_prompt = gen_prompt(dev_df, subject, k) prompt = train_prompt + prompt_end label = test_df.iloc[i, test_df.shape[1] - 1] pred = pipeline(prompt) if rank == 0: probs = [0 for _ in get_choices()] cor = pred.strip().startswith(label) cors.append(cor) all_probs.append(probs) if rank == 0: acc = np.mean(cors) cors = np.array(cors) all_probs = np.array(all_probs) print("Average accuracy {:.3f} - {}".format(acc, subject)) return cors, acc, all_probs else: return None, 0, None def get_tokenizer(ckpt_path, max_seq_len): print(f"Initializing tokenizer from {ckpt_path}") tokenizer = AutoTokenizer.from_pretrained( ckpt_path, model_max_length=max_seq_len, padding_side="left", trust_remote_code=True, ) tokenizer.pad_token = tokenizer.eos_token return tokenizer class Pipeline: def __init__(self, tokenizer, model, model_name, pad_id, end_id, max_attention_window_size, is_enc_dec, hf_model_dir, engine_dir): self.tokenizer = tokenizer self.model = model self.model_name = model_name self.pad_id = pad_id self.end_id = end_id self.max_attention_window_size = max_attention_window_size self.output_len = 2 self.is_enc_dec = is_enc_dec self.decoder_start_token_id = None self.engine_dir = engine_dir if self.is_enc_dec: self.decoder_start_token_id = AutoConfig.from_pretrained( hf_model_dir).decoder_start_token_id def __call__(self, prompt): rank = tensorrt_llm.mpi_rank() # Run the model in batch size 1 and beam size 1 inputs = self.tokenizer.encode(prompt, return_tensors="pt").squeeze(0) batch_input_ids = [inputs] # For multi-choice tasks like MMLU, we don't need to adjust following parameters output_len = self.output_len top_k = 1 top_p = 0.0 input_lengths = [x.size(0) for x in batch_input_ids] with torch.no_grad(): if isinstance(self.model, nn.Module): # Left padding for HF max_length = max(input_lengths) paddings = [ torch.ones(max_length - l, dtype=torch.int32) * self.pad_id for l in input_lengths ] batch_input_ids = [ torch.cat([pad, x]) for x, pad in zip(batch_input_ids, paddings) ] batch_input_ids = torch.stack(batch_input_ids) batch_input_ids = batch_input_ids.cuda() if self.is_enc_dec: batch_decoder_input_ids = torch.IntTensor( [[self.decoder_start_token_id]]).to('cuda') batch_decoder_input_ids = batch_decoder_input_ids.repeat( (batch_input_ids.shape[0], 1)) with torch.no_grad(): # Use default temperature and top_k outputs = self.model.generate( batch_input_ids, max_new_tokens=output_len, top_k=top_k, decoder_input_ids=batch_decoder_input_ids if self.is_enc_dec else None) if not self.is_enc_dec: output_ids = outputs[0, input_lengths[0]:] else: output_ids = outputs[0] elif isinstance(self.model, ModelRunnerCpp) or isinstance( self.model, ModelRunner): if self.is_enc_dec: encoder_input_ids, encoder_input_features, encoder_output_lengths, decoder_input_ids = prepare_enc_dec_inputs( batch_input_ids, self.model_name, self.engine_dir, None) outputs = self.model.generate( batch_input_ids=decoder_input_ids if self.is_enc_dec else batch_input_ids, encoder_input_ids=encoder_input_ids if self.is_enc_dec else None, encoder_input_features=encoder_input_features if self.is_enc_dec else None, encoder_output_lengths=encoder_output_lengths if self.is_enc_dec else None, max_new_tokens=output_len, max_attention_window_size=self.max_attention_window_size, end_id=self.end_id, pad_id=self.pad_id, top_k=top_k, top_p=top_p, ) torch.cuda.synchronize() if rank == 0: if not self.is_enc_dec: output_ids = outputs[0, 0, input_lengths[0]:] else: output_ids = outputs[0, 0] if rank == 0: return self.tokenizer.decode(output_ids, skip_special_tokens=True) else: return None def check_valid_length(self, prompt): if isinstance(self.model, nn.Module): return True input_len = len(self.tokenizer.encode(prompt)) return input_len <= self.model.max_input_len and input_len + self.output_len <= self.model.max_seq_len def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--data_dir", type=str, default="data/mmlu", help=("Path to the data directory. If not available, " "download https://people.eecs.berkeley.edu/~hendrycks/data.tar"), ) parser.add_argument("--ntrain", type=int, default=5) parser.add_argument("--max_input_length", type=int, default=2048) parser.add_argument("--test_trt_llm", action="store_true") parser.add_argument("--test_hf", action="store_true") parser.add_argument('--check_accuracy', action='store_true') parser.add_argument('--accuracy_threshold', type=float, default=30) parser.add_argument('--max_ite', type=int, default=10000000) parser = add_common_args(parser) args = parser.parse_args() return args def main(): args = parse_args() if args.tokenizer_dir is None: args.tokenizer_dir = args.hf_model_dir random.seed(RAND_SEED) np.random.seed(RAND_SEED) runtime_rank = tensorrt_llm.mpi_rank() os.path.dirname(os.path.abspath(__file__)) data_fullpath = os.path.join(args.data_dir, "test") subjects = sorted([ f.split("_test.csv")[0] for f in os.listdir(data_fullpath) if "_test.csv" in f ]) all_cors = [] subcat_cors = { subcat: [] for subcat_lists in get_subcategories().values() for subcat in subcat_lists } cat_cors = {cat: [] for cat in get_categories()} # different handling if encoder-decoder models is_enc_dec = read_is_enc_dec( args.engine_dir if not args.test_hf else args.hf_model_dir, args.test_hf) model_name, model_version = read_model_name( (args.engine_dir if not is_enc_dec else os.path.join( args.engine_dir, 'encoder')) if not args.test_hf else args.hf_model_dir, args.test_hf) tokenizer, pad_id, end_id = load_tokenizer( tokenizer_dir=args.tokenizer_dir, vocab_file=args.vocab_file, model_name=model_name, model_version=model_version, ) if args.test_trt_llm: assert not args.test_hf, "Cannot test both TRT-LLM and HF" runner_cls = ModelRunner if not PYTHON_BINDINGS else ModelRunnerCpp runner_kwargs = {} if PYTHON_BINDINGS: runner_kwargs.update(max_beam_width=1) runner_kwargs.update( is_enc_dec=is_enc_dec, max_tokens_in_paged_kv_cache=args.max_tokens_in_paged_kv_cache, kv_cache_enable_block_reuse=args.kv_cache_enable_block_reuse, kv_cache_free_gpu_memory_fraction=args. kv_cache_free_gpu_memory_fraction, cross_kv_cache_fraction=args.cross_kv_cache_fraction if is_enc_dec else None, enable_chunked_context=args.enable_chunked_context, multi_block_mode=args.multi_block_mode) model = runner_cls.from_dir(engine_dir=args.engine_dir, rank=runtime_rank, **runner_kwargs) else: assert args.test_hf, "Must test either TRT-LLM or HF" if 'GLM' in model_name and model_version == 'glm': auto_model_cls = AutoModelForSeq2SeqLM elif 'GLM' in model_name and model_version == 'chatglm': auto_model_cls = AutoModel elif is_enc_dec: auto_model_cls = AutoModelForSeq2SeqLM else: auto_model_cls = AutoModelForCausalLM model = auto_model_cls.from_pretrained( args.hf_model_dir, trust_remote_code=True, torch_dtype=DTYPE_STR_MAPPING[args.hf_data_type], device_map="auto" if args.hf_device_map_auto else None, ) if not args.hf_device_map_auto: model.cuda() if model_name == "qwen": model.generation_config = GenerationConfig.from_pretrained( args.hf_model_dir, trust_remote_code=True) pipeline = Pipeline(tokenizer, model, model_name, pad_id, end_id, args.max_attention_window_size, is_enc_dec, args.hf_model_dir, args.engine_dir) for subject in tqdm(subjects): dev_df = pd.read_csv(os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None)[:args.ntrain] test_df = pd.read_csv(os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None) cors, acc, probs = evaluate(args, subject, pipeline, dev_df, test_df) subcats = get_subcategories()[subject] for subcat in subcats: subcat_cors[subcat].append(cors) for key in get_categories().keys(): if subcat in get_categories()[key]: cat_cors[key].append(cors) all_cors.append(cors) if runtime_rank == 0: for subcat in subcat_cors: acc = np.mean(np.concatenate(subcat_cors[subcat])) * 100 print(f"Average accuracy {acc:.2f} - {subcat}") for cat in cat_cors: acc = np.mean(np.concatenate(cat_cors[cat])) * 100 print(f"Average accuracy {acc:.2f} - {cat}") weighted_acc = np.mean(np.concatenate(all_cors)) * 100 print(f"MMLU weighted average accuracy: {weighted_acc:.2f}") if args.check_accuracy: assert weighted_acc >= args.accuracy_threshold, f"Expected accuracy >= {args.accuracy_threshold} while got {weighted_acc}" return weighted_acc if __name__ == "__main__": main()