"""Disaggregated Benchmark Configuration.""" import os from datetime import datetime SESSION_COLLECT_CMD_TYPE = "session_collect" # GPU resource configuration # Simplified - only fields actually used in the codebase GPU_RESOURCE_CONFIG = { # OCI GB200 "GB200": { "gres_gpu": 4, # srun --gres parameter (None = not required) "lock_freq_graphics_mhz": 2062, # GPU graphics clock lock frequency (MHz) "lock_freq_memory_mhz": 3996, # GPU memory clock lock frequency (MHz) }, # OCI GB300 "GB300": { "gres_gpu": None, # GB300 does not require gres "lock_freq_graphics_mhz": None, # TODO: Set GB300 lock frequency "lock_freq_memory_mhz": None, }, # H100 "H100": { "gres_gpu": None, # H100 does not require gres "lock_freq_graphics_mhz": None, # TODO: Set H100 lock frequency "lock_freq_memory_mhz": None, }, # B200 "B200": { "gres_gpu": 4, "lock_freq_graphics_mhz": None, # TODO: Set B200 lock frequency "lock_freq_memory_mhz": None, }, # B300 "B300": { "gres_gpu": 4, "lock_freq_graphics_mhz": None, # TODO: Set B300 lock frequency "lock_freq_memory_mhz": None, }, } class EnvManager: """Environment variable manager.""" @staticmethod def get_gpu_type() -> str: return os.getenv("GPU_TYPE", "GB200") @staticmethod def get_slurm_partition() -> str: return os.getenv("SLURM_PARTITION", "") @staticmethod def get_slurm_account() -> str: return os.getenv("SLURM_ACCOUNT", "") @staticmethod def get_slurm_job_name() -> str: return os.getenv("SLURM_JOB_NAME", "unified-benchmark") @staticmethod def get_slurm_set_segment() -> bool: gpu_type = EnvManager.get_gpu_type() gpu_type_support_segment = {"GB200": True, "GB300": False} return gpu_type_support_segment.get(gpu_type, False) @staticmethod def get_container_image() -> str: return os.getenv("CONTAINER_IMAGE", "") @staticmethod def get_script_dir() -> str: return os.getenv("SCRIPT_DIR", "") @staticmethod def get_work_dir() -> str: return os.getenv("WORK_DIR", "") @staticmethod def get_repo_dir() -> str: return os.getenv("REPO_DIR", "") @staticmethod def get_trtllm_wheel_path() -> str: return os.getenv("TRTLLM_WHEEL_PATH", "") @staticmethod def get_model_dir() -> str: return os.getenv("MODEL_DIR", "") @staticmethod def get_dataset_dir() -> str: return os.getenv("DATASET_DIR", "") @staticmethod def get_output_path() -> str: output_path = os.getenv( "OUTPUT_PATH", "" ) # Only create directory if it's a valid path (not a placeholder) if output_path and not output_path.startswith("<"): os.makedirs(output_path, exist_ok=True) return output_path @staticmethod def get_install_mode() -> str: return os.getenv("INSTALL_MODE", "none") @staticmethod def get_container_mount(model_name: str = "") -> str: work_dir = EnvManager.get_work_dir() script_dir = EnvManager.get_script_dir() model_dir = EnvManager.get_model_dir() dataset_dir = EnvManager.get_dataset_dir() output_path = EnvManager.get_output_path() repo_dir = EnvManager.get_repo_dir() trtllm_wheel_path = EnvManager.get_trtllm_wheel_path() mounts = [ f"{work_dir}:{work_dir}", f"{script_dir}:{script_dir}", f"{model_dir}:{model_dir}", f"{output_path}:{output_path}", ] # Kimi-K2 needs 640G of shared memory, otherwise will cause host memory OOM. if model_name.find("kimi-k2") != -1: mounts.append("tmpfs:/dev/shm:size=640G") if dataset_dir and not dataset_dir.startswith("<"): mounts.append(f"{dataset_dir}:{dataset_dir}") # Add repo_dir if available if repo_dir and not repo_dir.startswith("<"): mounts.append(f"{repo_dir}:{repo_dir}") if trtllm_wheel_path and not trtllm_wheel_path.startswith("<"): trtllm_wheel_dir = os.path.dirname(trtllm_wheel_path) mounts.append(f"{trtllm_wheel_dir}:{trtllm_wheel_dir}") return ",".join(mounts) @staticmethod def get_debug_mode() -> bool: return os.getenv("DEBUG_MODE", "0") == "1" @staticmethod def get_debug_job_id() -> str: return os.getenv("DEBUG_JOB_ID", "908390") CONFIG_BASE_DIR = os.path.join(EnvManager.get_work_dir(), "test_configs") def extract_config_fields(config_data: dict) -> dict: """Extract critical fields from configuration data to generate test ID and log directory.""" # Extract basic fields isl = config_data["benchmark"]["input_length"] osl = config_data["benchmark"]["output_length"] ctx_num = config_data["hardware"]["num_ctx_servers"] gen_num = config_data["hardware"]["num_gen_servers"] ctx_max_seq_len = config_data["worker_config"]["ctx"]["max_seq_len"] gen_max_seq_len = config_data["worker_config"]["gen"]["max_seq_len"] gen_tp_size = config_data["worker_config"]["gen"]["tensor_parallel_size"] gen_batch_size = config_data["worker_config"]["gen"]["max_batch_size"] gen_enable_dp = config_data["worker_config"]["gen"]["enable_attention_dp"] streaming = config_data["benchmark"]["streaming"] cache_transceiver_backend = config_data["worker_config"]["gen"]["cache_transceiver_config"][ "backend" ] gen_max_tokens = config_data["worker_config"]["gen"]["max_num_tokens"] gen_max_batch_size = config_data["worker_config"]["gen"]["max_batch_size"] eplb_slots = ( config_data["worker_config"]["gen"] .get("moe_config", {}) .get("load_balancer", {}) .get("num_slots", 0) ) # Get MTP size gen_config = config_data["worker_config"]["gen"] mtp_size = 0 if "speculative_config" in gen_config: mtp_size = gen_config["speculative_config"].get("num_nextn_predict_layers", 0) # Generate derived fields dep_flag = "dep" if gen_enable_dp else "tep" date_prefix = datetime.now().strftime("%Y%m%d") log_base = f"{date_prefix}/{isl}-{osl}" context_dir = ( f"ctx{ctx_num}_gen{gen_num}_{dep_flag}{gen_tp_size}_" f"batch{gen_batch_size}_eplb{eplb_slots}_mtp{mtp_size}" ) return { "isl": isl, "osl": osl, "ctx_num": ctx_num, "gen_num": gen_num, "gen_tp_size": gen_tp_size, "gen_batch_size": gen_batch_size, "gen_enable_dp": gen_enable_dp, "eplb_slots": eplb_slots, "mtp_size": mtp_size, "dep_flag": dep_flag, "cache_transceiver_backend": cache_transceiver_backend, "log_base": log_base, "context_dir": context_dir, "gen_max_tokens": gen_max_tokens, "gen_max_batch_size": gen_max_batch_size, "streaming": streaming, "ctx_max_seq_len": ctx_max_seq_len, "gen_max_seq_len": gen_max_seq_len, }