/* * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gptAttentionPlugin.h" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention.h" #include "tensorrt_llm/kernels/gptKernels.h" #include "tensorrt_llm/kernels/unfusedAttentionKernels.h" #include "tensorrt_llm/plugins/common/checkMacrosPlugin.h" #include "tensorrt_llm/plugins/common/plugin.h" #include "tensorrt_llm/plugins/gptAttentionCommon/gptAttentionCommon.h" #include "tensorrt_llm/plugins/gptAttentionCommon/gptAttentionCommonImpl.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/iBuffer.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/utils/debugUtils.h" #include #include #include #include using namespace nvinfer1; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::common; using tensorrt_llm::plugins::GPTAttentionPluginCreator; using tensorrt_llm::plugins::GPTAttentionPlugin; static char const* GPT_ATTENTION_PLUGIN_VERSION{"1"}; static char const* GPT_ATTENTION_PLUGIN_NAME{"GPTAttention"}; GPTAttentionPlugin::GPTAttentionPlugin(int layer_idx, int num_heads, int vision_start, int vision_length, int num_kv_heads, int head_size, int unidirectional, float q_scaling, float qk_tanh_scale, tensorrt_llm::kernels::PositionEmbeddingType position_embedding_type, int rotary_embedding_dim, // for RoPE. 0 for non-RoPE float rotary_embedding_base, tensorrt_llm::kernels::RotaryScalingType rotary_embedding_scale_type, float rotary_embedding_scale, float rotary_embedding_short_m_scale, float rotary_embedding_long_m_scale, // magnitude scaling factors for Phi-3 long RoPE int rotary_embedding_max_positions, int rotary_embedding_original_max_positions, int tp_size, int tp_rank, // for ALiBi bool unfuse_qkv_gemm, // for AutoPP tensorrt_llm::kernels::ContextFMHAType context_fmha_type, bool multi_block_mode, bool enable_xqa, int kv_cache_quant_mode, bool remove_input_padding, tensorrt_llm::kernels::AttentionMaskType mask_type, tensorrt_llm::kernels::BlockSparseParams block_sparse_params, bool paged_kv_cache, int tokens_per_block, nvinfer1::DataType type, int32_t max_context_length, bool qkv_bias_enabled, bool cross_attention, int max_distance, bool pos_shift_enabled, bool dense_context_fmha, bool use_paged_context_fmha, bool use_fp8_context_fmha, bool use_cache, bool is_spec_decoding_enabled) : GPTAttentionPluginCommon(layer_idx, num_heads, vision_start, vision_length, num_kv_heads, head_size, unidirectional, q_scaling, qk_tanh_scale, position_embedding_type, rotary_embedding_dim, rotary_embedding_base, rotary_embedding_scale_type, rotary_embedding_scale, rotary_embedding_short_m_scale, rotary_embedding_long_m_scale, rotary_embedding_max_positions, rotary_embedding_original_max_positions, tp_size, tp_rank, unfuse_qkv_gemm, context_fmha_type, multi_block_mode, enable_xqa, kv_cache_quant_mode, remove_input_padding, mask_type, block_sparse_params, paged_kv_cache, tokens_per_block, type, max_context_length, qkv_bias_enabled, cross_attention, max_distance, pos_shift_enabled, dense_context_fmha, use_paged_context_fmha, use_fp8_context_fmha, use_cache, is_spec_decoding_enabled) { initEntryIdx(); } GPTAttentionPlugin::GPTAttentionPlugin(void const* data, size_t length) : GPTAttentionPluginCommon(data, length) { initEntryIdx(); } bool GPTAttentionPlugin::isEntryUsed(IdxEntry const& entry) const { switch (entry) { case IdxEntry::QKV_TENSOR: return true; case IdxEntry::K_TENSOR: return mUnfuseQkvGemm; case IdxEntry::V_TENSOR: return mUnfuseQkvGemm; case IdxEntry::SEQUENCE_LENGTH: return useKVCache(); case IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS: return useKVCache(); case IdxEntry::HOST_MAX_ATTENTION_WINDOW: return true; case IdxEntry::HOST_SINK_TOKEN_LENGTH: return true; case IdxEntry::CONTEXT_LENGTHS: return true; case IdxEntry::CACHE_INDIR: return useKVCache(); case IdxEntry::REQUEST_TYPES: return true; case IdxEntry::KV_CACHE_BLOCK_OFFSETS: return useKVCache() && mPagedKVCache; case IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS: return useKVCache() && mPagedKVCache; case IdxEntry::HOST_KV_CACHE_POOL_POINTERS: return useKVCache() && mPagedKVCache; case IdxEntry::PAST_KEY_VALUE: return useKVCache() && !mPagedKVCache; case IdxEntry::KV_CACHE_QUANTIZATION_SCALE: return useKVCache() && mKVCacheQuantMode.hasKvCacheQuant(); case IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE: return useKVCache() && mKVCacheQuantMode.hasKvCacheQuant(); case IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE: return mFP8ContextFMHA && mKVCacheQuantMode.hasFp8Qdq(); case IdxEntry::ROTARY_COS_SIN: return isRoPE(); case IdxEntry::ROTARY_EMBEDDING_SCALING_FACTORS: return isLongRoPE(); case IdxEntry::ALIBI_SLOPES: return isALiBi(); case IdxEntry::RELATIVE_ATTENTION_BIAS: return isRelativePosition(); case IdxEntry::CROSS_QKV: return isCrossAttention(); case IdxEntry::CROSS_QKV_LENGTH: return isCrossAttention(); case IdxEntry::ENCODER_INPUT_LENGTH: return isCrossAttention(); case IdxEntry::HOST_CONTEXT_LENGTH: return mRemovePadding; case IdxEntry::QKV_BIAS_TENSOR: return mQKVBiasEnabled; case IdxEntry::SPEC_DECODING_GENERATION_LENGTHS: return mIsSpecDecodingEnabled; case IdxEntry::SPEC_DECODING_PACKED_MASK: return mIsSpecDecodingEnabled; case IdxEntry::SPEC_DECODING_POSITION_OFFSETS: return mIsSpecDecodingEnabled; default: return false; } } void GPTAttentionPlugin::initEntryIdx() { mEntryIdx.resize(static_cast(IdxEntry::ENUM_SIZE)); size_t entryIdx = 0; for (int i = 0; i < static_cast(IdxEntry::ENUM_SIZE); i++) { mEntryIdx[i] = entryIdx; entryIdx += isEntryUsed(static_cast(i)); } } GPTAttentionPlugin::IndexType GPTAttentionPlugin::getIdx(IdxEntry const& entry) const { TLLM_CHECK_WITH_INFO( isEntryUsed(entry), common::fmtstr("getIdx() should not be used with entry %lu\n", static_cast(entry))); return mEntryIdx[static_cast(entry)]; } // IPluginV2DynamicExt Methods GPTAttentionPlugin* GPTAttentionPlugin::clone() const noexcept { return dynamic_cast(this->cloneImpl()); } static int getPackedTensorHiddenDimIndex(bool removePadding) { return removePadding ? 1 : 2; } // NOTE: generation input length might be larger than one in the spec decoding mode. int GPTAttentionPlugin::getGenerationInputSequenceLength( nvinfer1::PluginTensorDesc const* inputDesc, int32_t localNbSeq, int32_t localNbTokens) const { if (mRemovePadding) { // Speculative decoding mode might need variable generation input sequence length. if (mIsSpecDecodingEnabled) { // SPEC_DECODING_POSITION_OFFSETS: [batch_size, max_generation_input_length]. return inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1]; } else { // [num_tokens, local_hidden_size] where num_tokens = batch_size * generation_input_length TLLM_CHECK_WITH_INFO(localNbTokens % localNbSeq == 0, "seq_len should be same for all generation requests, localNbTokens=%d, localNbSeq=%d", localNbTokens, localNbSeq); return localNbTokens / localNbSeq; } } else { // We don't have IFB without mRemovePadding, so just take it out from inputDesc // [batch_size, seq_len, local_hidden_size] return inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1]; } } // outputs // output_tensor [batch_size, seq_len, local_hidden_size] or [num_tokens, local_hidden_size] // present_key_value_pool (optional if mPagedKVCache is false) [batch_size, 2, local_num_kv_heads, max_seq_len, // head_size] nvinfer1::DimsExprs GPTAttentionPlugin::getOutputDimensions( int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept { TLLM_CHECK(outputIndex == 0 || (!mPagedKVCache && useKVCache() && outputIndex == 1)); if (outputIndex == 0) { auto ret = inputs[getIdx(IdxEntry::QKV_TENSOR)]; ret.d[getPackedTensorHiddenDimIndex(mRemovePadding)] = exprBuilder.operation( DimensionOperation::kPROD, *exprBuilder.constant(mHeadSize), *exprBuilder.constant(mNumHeads)); return ret; } return inputs[getIdx(IdxEntry::PAST_KEY_VALUE)]; } bool GPTAttentionPlugin::supportsFormatCombination( int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept { if (pos == getIdx(IdxEntry::CONTEXT_LENGTHS) || pos == getIdx(IdxEntry::REQUEST_TYPES) || pos == getIdx(IdxEntry::HOST_MAX_ATTENTION_WINDOW) || pos == getIdx(IdxEntry::HOST_SINK_TOKEN_LENGTH) || (isEntryUsed(IdxEntry::SPEC_DECODING_PACKED_MASK) && pos == getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)) || (isEntryUsed(IdxEntry::SPEC_DECODING_POSITION_OFFSETS) && pos == getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)) || (isEntryUsed(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS) && pos == getIdx(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS))) { return inOut[pos].type == nvinfer1::DataType::kINT32; } else if (useKVCache() && (pos == getIdx(IdxEntry::SEQUENCE_LENGTH) || pos == getIdx(IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS) || pos == getIdx(IdxEntry::CACHE_INDIR))) { return inOut[pos].type == nvinfer1::DataType::kINT32; } else if (isRoPE() && (pos == getIdx(IdxEntry::ROTARY_COS_SIN))) { return inOut[pos].type == nvinfer1::DataType::kFLOAT; } else if (isLongRoPE() && (pos == getIdx(IdxEntry::ROTARY_EMBEDDING_SCALING_FACTORS))) { return inOut[pos].type == nvinfer1::DataType::kFLOAT; } else if (useKVCache() && mKVCacheQuantMode.hasKvCacheQuant() && (pos == getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE) || pos == getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE))) { // kv_scale for mType->int8/fp8 and int8/fp8->mType conversion return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR; } else if (mFP8ContextFMHA && pos == getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE)) { return inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format == TensorFormat::kLINEAR; } else if (mPagedKVCache && (pos == getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS) || pos == getIdx(IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS))) { // kv cache block offsets return inOut[pos].type == nvinfer1::DataType::kINT32 && inOut[pos].format == TensorFormat::kLINEAR; } else if (mPagedKVCache && (pos == getIdx(IdxEntry::HOST_KV_CACHE_POOL_POINTERS))) { // kv cache pool pointers return inOut[pos].type == nvinfer1::DataType::kINT64 && inOut[pos].format == TensorFormat::kLINEAR; } else if (mKVCacheQuantMode.hasInt8KvCache() && (!mPagedKVCache && (pos == getIdx(IdxEntry::PAST_KEY_VALUE) || pos == nbInputs + 1))) { // If use Int8 K/V cache we require I/O KV values to int8 return (inOut[pos].type == nvinfer1::DataType::kINT8) && (inOut[pos].format == TensorFormat::kLINEAR); } else if (mKVCacheQuantMode.hasFp8KvCache() && (!mPagedKVCache && (pos == getIdx(IdxEntry::PAST_KEY_VALUE) || pos == nbInputs + 1))) { // If use FP8 K/V cache we require I/O KV values to FP8 return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR); } else if (mRemovePadding && (pos == getIdx(IdxEntry::HOST_CONTEXT_LENGTH))) { return inOut[pos].type == nvinfer1::DataType::kINT32 && inOut[pos].format == TensorFormat::kLINEAR; } else if (mCrossAttention && (pos == getIdx(IdxEntry::CROSS_QKV_LENGTH) || pos == getIdx(IdxEntry::ENCODER_INPUT_LENGTH))) { return inOut[pos].type == nvinfer1::DataType::kINT32; } else if (pos == nbInputs && mFP8ContextFMHA) { // Output tensor now supports fp8 data type. return (inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR); } else { return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR); } return false; } template void GPTAttentionPlugin::configurePluginImpl(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept { TLLM_CHECK(mHeadSize > 0); int const beamWidth = isCrossAttention() ? 1 : (useKVCache() ? in[getIdx(IdxEntry::CACHE_INDIR)].desc.dims.d[1] : 1); // Commonly, cyclic_attention_window_size, and max_attention_window_size will be the same // unless each layer has different attention window sizes. // the kv_cache capacity. int max_encoder_context_len = isCrossAttention() ? in[getIdx(IdxEntry::CROSS_QKV_LENGTH)].desc.dims.d[0] : 0; int const max_attention_window_size = isCrossAttention() ? max_encoder_context_len : (useKVCache() ? in[getIdx(IdxEntry::CACHE_INDIR)].desc.dims.d[2] : 0); int const cyclic_attention_window_size = max_attention_window_size; int const num_requests = 256; int const sink_token_length = 0; EnqueueGenerationParams enqueueParams{/*attention_input=*/nullptr, /*qkv_bias=*/nullptr, /*input_seq_length=*/0, /*sequence_lengths=*/nullptr, /*past_kv_length=*/0, beamWidth, /*context_lengths=*/nullptr, /*kv_scale_orig_quant=*/nullptr, /*kv_scale_quant_orig=*/nullptr, /*attention_out_orig_quant=*/nullptr, /*rotary_embedding_scaling_factors*/ nullptr, /*alibi_slopes=*/nullptr, /*context_buf_=*/nullptr, /*key_value_cache=*/nullptr, /*block_offsets=*/nullptr, /*host_primary_pool_pointer=*/nullptr, /*host_secondary_pool_pointer=*/nullptr, max_attention_window_size, cyclic_attention_window_size, sink_token_length, num_requests, /*max_blocks_per_sequence=*/0, /*cache_indir=*/nullptr, /*workspace=*/nullptr, /*max_context_kv_len_list=*/nullptr}; prepareEnqueueGeneration(enqueueParams); // Always reserve SemaphoreArray (for multi-block mode) as MMHA may enable multi-block mode when shared memory is // not enough. auto const& ctxLenTensor = in[getIdx(IdxEntry::CONTEXT_LENGTHS)]; TLLM_CHECK_DEBUG(ctxLenTensor.max.nbDims == 1); int32_t const max_batch_beam = in[getIdx(IdxEntry::CONTEXT_LENGTHS)].max.d[0]; reserveSemaphoreArray(mNumHeads * max_batch_beam); } template void GPTAttentionPlugin::configurePluginDispatchKVCacheType(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept { if (mPagedKVCache) { configurePluginImpl(in, nbInputs, out, nbOutputs); } else { configurePluginImpl(in, nbInputs, out, nbOutputs); } } void GPTAttentionPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept { if (mType == nvinfer1::DataType::kHALF) { configurePluginDispatchKVCacheType(in, nbInputs, out, nbOutputs); } else if (mType == nvinfer1::DataType::kFLOAT) { configurePluginDispatchKVCacheType(in, nbInputs, out, nbOutputs); } #ifdef ENABLE_BF16 else if (mType == nvinfer1::DataType::kBF16) { configurePluginDispatchKVCacheType<__nv_bfloat16>(in, nbInputs, out, nbOutputs); } #endif } size_t GPTAttentionPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs, nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept { int const max_context_length = mMaxContextLength; int const cross_qkv_length = isCrossAttention() ? inputs[getIdx(IdxEntry::CROSS_QKV_LENGTH)].dims.d[0] : 0; int const nbReq = inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0]; auto const type = inputs[getIdx(IdxEntry::QKV_TENSOR)].type; int const max_kv_cache_length = isCrossAttention() ? cross_qkv_length : (useKVCache() ? inputs[getIdx(IdxEntry::CACHE_INDIR)].dims.d[2] : 0); int const max_num_tokens = inputs[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0]; size_t const context_workspace_size = getWorkspaceSizeForContext( type, nbReq, max_context_length, max_kv_cache_length, cross_qkv_length, max_num_tokens); int const total_num_seq = inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0]; int32_t const num_spec_dec_tokens = mIsSpecDecodingEnabled ? inputs[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1] : 1; int32_t const max_batch_beam = inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0]; int32_t const max_num_gen_tokens = std::min(max_num_tokens, num_spec_dec_tokens * max_batch_beam); size_t const generation_workspace_size = getWorkspaceSizeForGeneration(type, total_num_seq, max_kv_cache_length, max_num_tokens); size_t attention_input_workspace_size = 0; if (mUnfuseQkvGemm) { int const local_hidden_units_q = inputs[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)]; int const local_hidden_units_kv = inputs[getIdx(IdxEntry::K_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)]; size_t const size = tensorrt_llm::runtime::BufferDataType(type).getSize(); size_t const attention_input_size = size * nbReq * max_context_length * (local_hidden_units_q + 2 * local_hidden_units_kv); size_t workspaces[1]; workspaces[0] = attention_input_size; attention_input_workspace_size = tensorrt_llm::common::calculateTotalWorkspaceSize(workspaces, 1); } return std::max(context_workspace_size, generation_workspace_size) + attention_input_workspace_size; } static size_t getStride(nvinfer1::Dims const& dims, int n) { TLLM_CHECK(n >= 0 && n < dims.nbDims); return std::accumulate(dims.d + n + 1, dims.d + dims.nbDims, 1, std::multiplies{}); } template int GPTAttentionPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) { TLLM_LOG_TRACE("Attention plugin start at layer %d", mLayerIdx); int32_t const nbSeq = inputDesc[getIdx(IdxEntry::CONTEXT_LENGTHS)].dims.d[0]; int32_t const beam_width = useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[1] : 1; RequestType const* reqTypes = static_cast(inputs[getIdx(IdxEntry::REQUEST_TYPES)]); int32_t nbContextRequests = 0; int32_t contextTokenIdxEnd = 0; // count context requests for (int32_t seqIdx = 0; seqIdx < nbSeq; seqIdx++) { if (reqTypes[seqIdx] != RequestType::kCONTEXT) { break; } ++nbContextRequests; contextTokenIdxEnd += mRemovePadding ? static_cast(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)])[seqIdx] : inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1]; } for (int32_t seqIdx = nbContextRequests; seqIdx < nbSeq; seqIdx++) { TLLM_CHECK(reqTypes[seqIdx] == RequestType::kGENERATION); } // mixed requests require mRemovePadding and mPagedKVCache if (nbContextRequests != 0 && nbContextRequests != nbSeq) { TLLM_CHECK(mRemovePadding && mPagedKVCache); } if (nbContextRequests > 0) { auto seqIdxBeg = 0; auto tokenIdxBeg = 0; auto localNbTokens = contextTokenIdxEnd; enqueueSome(seqIdxBeg, nbContextRequests, tokenIdxBeg, localNbTokens, inputDesc, outputDesc, inputs, outputs, workspace, stream); } if (auto nbGenerationSeq = nbSeq - nbContextRequests; nbGenerationSeq > 0) { auto seqIdxBeg = nbContextRequests; auto tokenIdxBeg = contextTokenIdxEnd; // if mRemovePadding is true, we may have IFB, and need to remove context tokens. // if mRemovePadding is false, it is only generation requests, so just multiply batch_beam and seq_len (May not // 1 for Parallel Decoding) auto localNbTokens = mRemovePadding ? inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0] - contextTokenIdxEnd : inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0] * inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1]; enqueueSome(seqIdxBeg, nbGenerationSeq, tokenIdxBeg, localNbTokens, inputDesc, outputDesc, inputs, outputs, workspace, stream); } TLLM_LOG_TRACE("Attention plugin stop at layer %d", mLayerIdx); return 0; } template int GPTAttentionPlugin::enqueueSome(int32_t seqIdxBeg, int32_t localNbSeq, int32_t tokenIdxBeg, int32_t localNbTokens, nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) { // relative_attention_bias [head_num, max_seq_len, max_seq_len] (optional in relative position) // or [head_num, num_buckets] (optional in implicit relative attention) // cross_qkv [batch_size, seq_len, 3 * local_hidden_size] or [num_tokens, 3 * local_hidden_size] // when enable remove_input_padding (optional in cross attention mode) // cross_qkv_length [int] max encoder input context length (optional in cross attention mode) // encoder_input_lengths [batch_size] raw sequence lengths (optional in cross attention mode) T const* attention_input = static_cast(inputs[getIdx(IdxEntry::QKV_TENSOR)]) + inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)] * size_t(tokenIdxBeg); T const* qkv_bias = nullptr; if (mQKVBiasEnabled) { qkv_bias = reinterpret_cast(inputs[getIdx(IdxEntry::QKV_BIAS_TENSOR)]); } // Rotary cos_sin cache to avoid re-computing. float2 const* rotary_cos_sin = nullptr; if (isRoPE()) { rotary_cos_sin = reinterpret_cast(inputs[getIdx(IdxEntry::ROTARY_COS_SIN)]); } float const* rotary_embedding_scaling_factors = nullptr; if (isLongRoPE()) { rotary_embedding_scaling_factors = reinterpret_cast(inputs[getIdx(IdxEntry::ROTARY_EMBEDDING_SCALING_FACTORS)]); } auto const reqTypeInBatchPtr = static_cast(inputs[getIdx(IdxEntry::REQUEST_TYPES)]) + seqIdxBeg; bool const is_context = (reqTypeInBatchPtr[0] == RequestType::kCONTEXT); if (mUnfuseQkvGemm) { int const max_seqlen = inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[mRemovePadding ? 0 : 1]; int const batch_size = mRemovePadding ? 1 : inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[0]; T const* attention_input_q = static_cast(inputs[getIdx(IdxEntry::QKV_TENSOR)]); T const* attention_input_k = static_cast(inputs[getIdx(IdxEntry::K_TENSOR)]); T const* attention_input_v = static_cast(inputs[getIdx(IdxEntry::V_TENSOR)]); size_t const hidden_units_q = inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)]; size_t const hidden_units_kv = inputDesc[getIdx(IdxEntry::K_TENSOR)].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)]; size_t const hidden_units = hidden_units_q + 2 * hidden_units_kv; size_t const size_qkv = sizeof(T) * hidden_units; size_t const size_q = sizeof(T) * hidden_units_q; size_t const size_kv = sizeof(T) * hidden_units_kv; size_t const total_size = size_qkv * batch_size * max_seqlen; int8_t* workspace_byte_ptr = reinterpret_cast(workspace); size_t offset = 0; T* attention_input_qkv = reinterpret_cast(nextWorkspacePtr(workspace_byte_ptr, offset, total_size)); workspace = reinterpret_cast(workspace_byte_ptr + offset); cudaMemcpy2DAsync(attention_input_qkv, size_qkv, attention_input_q, size_q, size_q, batch_size * max_seqlen, cudaMemcpyDeviceToDevice, stream); cudaMemcpy2DAsync(attention_input_qkv + hidden_units_q, size_qkv, attention_input_k, size_kv, size_kv, batch_size * max_seqlen, cudaMemcpyDeviceToDevice, stream); cudaMemcpy2DAsync(attention_input_qkv + hidden_units_q + hidden_units_kv, size_qkv, attention_input_v, size_kv, size_kv, batch_size * max_seqlen, cudaMemcpyDeviceToDevice, stream); attention_input = attention_input_qkv + hidden_units * tokenIdxBeg; } int const* context_q_lengths = reinterpret_cast(inputs[getIdx(IdxEntry::CONTEXT_LENGTHS)]) + seqIdxBeg; int const* sequence_kv_length = useKVCache() ? static_cast(inputs[getIdx(IdxEntry::SEQUENCE_LENGTH)]) + seqIdxBeg : context_q_lengths; // Note we still need context length during generation for MMHA optimization. int32_t const max_context_q_len = [&]() { if (!mRemovePadding) { return static_cast(inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims.d[1]); } auto const host_context_lengths = static_cast(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)]) + seqIdxBeg; return *std::max_element(host_context_lengths, host_context_lengths + localNbSeq); }(); int max_encoder_context_len = isCrossAttention() ? inputDesc[getIdx(IdxEntry::CROSS_QKV_LENGTH)].dims.d[0] : 0; // for enc-dec model, since decoder_input_ids could be longer than 1, // such model has an encoder context (for cross attn) and an decoder context (for self attn) // clarify 3 lens: // -- max_context_q_len: len of decoder input. No "max" concept, it's what it is given. // Also called (decoder_)input_seq_length, normally 1 for encoder-decoder start token // -- max_seq_len: max allowed len of decoder output, i.e. final results // -- max_encoder_context_len: len of encoder input (in cross attn). Also called encoder_input_seq_length int const beamWidth = isCrossAttention() ? 1 : (useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[1] : 1); // Commonly, cyclic_attention_window_size, and max_attention_window_size will be the same // unless each layer has different attention window sizes. // the kv_cache capacity. int const max_attention_window_size = isCrossAttention() ? max_encoder_context_len : (useKVCache() ? inputDesc[getIdx(IdxEntry::CACHE_INDIR)].dims.d[2] : 0); // The cyclic_attention_window_size will determine the cyclic kv cache position of new tokens. // Note that this cyclic_attention_window_size might be smaller than the actual kv cache capactity. int const cyclic_attention_window_size = isCrossAttention() ? max_encoder_context_len : reinterpret_cast(inputs[getIdx(IdxEntry::HOST_MAX_ATTENTION_WINDOW)])[mLayerIdx]; int const sink_token_length = reinterpret_cast(inputs[getIdx(IdxEntry::HOST_SINK_TOKEN_LENGTH)])[0]; float const* kv_scale_orig_quant = nullptr; float const* kv_scale_quant_orig = nullptr; if (useKVCache() && mKVCacheQuantMode.hasKvCacheQuant()) { assert(inputDesc[getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT); assert(inputDesc[getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT); kv_scale_orig_quant = reinterpret_cast(inputs[getIdx(IdxEntry::KV_CACHE_QUANTIZATION_SCALE)]); kv_scale_quant_orig = reinterpret_cast(inputs[getIdx(IdxEntry::KV_CACHE_DEQUANTIZATION_SCALE)]); } float const* attention_output_orig_quant = nullptr; if (mFP8ContextFMHA) { assert(inputDesc[getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE)].type == nvinfer1::DataType::kFLOAT); attention_output_orig_quant = reinterpret_cast(inputs[getIdx(IdxEntry::ATTENTION_OUTPUT_QUANTIZATION_SCALE)]); } int max_blocks_per_sequence = 0; kernels::KVBlockArray::DataType* block_offsets = nullptr; kernels::KVBlockArray::DataType* host_block_offsets = nullptr; void* host_primary_pool_pointer = nullptr; void* host_secondary_pool_pointer = nullptr; if (useKVCache() && mPagedKVCache) { auto const& kvCacheBlockOffsets = inputDesc[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)]; auto const& kvCacheBlockOffsetsShape = inputDesc[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)].dims; max_blocks_per_sequence = kvCacheBlockOffsetsShape.d[kvCacheBlockOffsetsShape.nbDims - 1]; auto const seqStride = getStride(kvCacheBlockOffsetsShape, 0); auto const seqOffset = seqIdxBeg * seqStride; block_offsets = reinterpret_cast(inputs[getIdx(IdxEntry::KV_CACHE_BLOCK_OFFSETS)]) + seqOffset; host_block_offsets = reinterpret_cast(inputs[getIdx(IdxEntry::HOST_KV_CACHE_BLOCK_OFFSETS)]) + seqOffset; auto const* const typed_host_pool_pointers = static_cast(inputs[getIdx(IdxEntry::HOST_KV_CACHE_POOL_POINTERS)]); auto const cacheElemSize = (mKVCacheQuantMode.hasKvCacheQuant() ? 1 : sizeof(T)); auto const blockSize = mTokensPerBlock * mNumKVHeads * mHeadSize; auto const bytesPerBlock = blockSize * cacheElemSize; auto const layerOffset = mLayerIdx * 2 * bytesPerBlock; host_primary_pool_pointer = reinterpret_cast(typed_host_pool_pointers[0] + layerOffset); host_secondary_pool_pointer = reinterpret_cast(typed_host_pool_pointers[1] + layerOffset); } T* context_buf_ = (T*) (outputs[0]) + outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)] * tokenIdxBeg; void* key_value_cache = nullptr; if (useKVCache() && !mPagedKVCache) { auto const cacheElemSize = (mKVCacheQuantMode.hasKvCacheQuant() ? 1 : sizeof(T)); key_value_cache = static_cast(outputs[1]) + cacheElemSize * getStride(outputDesc[1].dims, 0) * seqIdxBeg; void const* past_key_value_cache = inputs[getIdx(IdxEntry::PAST_KEY_VALUE)]; if (past_key_value_cache != outputs[1]) { auto shape = outputDesc[1].dims; auto const size = std::accumulate(shape.d, shape.d + shape.nbDims, 1, std::multiplies{}); cudaMemcpyAsync(outputs[1], past_key_value_cache, size, cudaMemcpyDeviceToDevice, stream); } } T const* alibi_slopes = isALiBi() ? static_cast(inputs[getIdx(IdxEntry::ALIBI_SLOPES)]) : nullptr; int const* spec_decoding_packed_mask = nullptr; int const* spec_decoding_position_offsets = nullptr; int const* spec_decoding_generation_lengths = nullptr; int num_spec_decoding_tokens = 0; if (mIsSpecDecodingEnabled) { // Second dimension of spec_decoding_position_offsets is num_spec_decoding_tokens + 1. // [batch_size, num_spec_decoding_tokens + 1] num_spec_decoding_tokens = inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims.d[1] - 1; if (num_spec_decoding_tokens > 0) { spec_decoding_packed_mask = static_cast(inputs[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)]) + seqIdxBeg * getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)].dims, 0); // Packed as [num_tokens, packed_mask_size] // Use seqIdxBeg * (num_spec_decoding_tokens + 1) here as only generation tokens have the packed_mask // buffer. // TODO: support variable sequence length based on generationTokenIdxBeg. spec_decoding_packed_mask = static_cast(inputs[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)]) + seqIdxBeg * (num_spec_decoding_tokens + 1) * getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_PACKED_MASK)].dims, 0); spec_decoding_position_offsets = static_cast(inputs[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)]) + seqIdxBeg * getStride(inputDesc[getIdx(IdxEntry::SPEC_DECODING_POSITION_OFFSETS)].dims, 0); spec_decoding_generation_lengths = static_cast(inputs[getIdx(IdxEntry::SPEC_DECODING_GENERATION_LENGTHS)]) + seqIdxBeg; } } int32_t const* max_context_kv_len_list = useKVCache() ? static_cast(inputs[getIdx(IdxEntry::HOST_PAST_KEY_VALUE_LENGTHS)]) + seqIdxBeg : nullptr; int32_t const max_context_kv_len = useKVCache() ? *std::max_element(max_context_kv_len_list, max_context_kv_len_list + localNbSeq) : max_context_q_len; if (is_context) // context stage { TLLM_CHECK(max_context_q_len <= mMaxContextLength); int const batch_size = localNbSeq; int const request_batch_size = batch_size; // num of total tokens (without paddings when remove paddings). int num_encoder_tokens = 0; if (isCrossAttention()) { if (!mRemovePadding) { num_encoder_tokens = request_batch_size * max_encoder_context_len; } else { num_encoder_tokens = inputDesc[getIdx(IdxEntry::CROSS_QKV)].dims.d[0]; } } EnqueueContextParams enqueue_params{attention_input, qkv_bias, rotary_cos_sin, max_context_q_len, max_context_kv_len, max_attention_window_size, cyclic_attention_window_size, sink_token_length, context_q_lengths, sequence_kv_length, kv_scale_orig_quant, kv_scale_quant_orig, attention_output_orig_quant, alibi_slopes, context_buf_, key_value_cache, block_offsets, host_block_offsets, host_primary_pool_pointer, host_secondary_pool_pointer, batch_size, localNbTokens, max_blocks_per_sequence, workspace}; if (isRelativePosition()) { enqueue_params.relative_attention_bias = static_cast(inputs[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)]); enqueue_params.relative_attention_bias_stride = inputDesc[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)].dims.d[1]; // max_seq_len or num_buckets } if (isCrossAttention()) { enqueue_params.cross_qkv = static_cast(inputs[getIdx(IdxEntry::CROSS_QKV)]); enqueue_params.cross_qkv_length = max_encoder_context_len; enqueue_params.encoder_input_lengths = reinterpret_cast(inputs[getIdx(IdxEntry::ENCODER_INPUT_LENGTH)]) + seqIdxBeg; enqueue_params.num_encoder_tokens = num_encoder_tokens; } enqueueContext(enqueue_params, stream); { std::string const afterContexStr = "ctx attention at layer " + std::to_string(mLayerIdx); TLLM_CHECK_DEBUG_WITH_INFO(tensorrt_llm::runtime::utils::tensorHasNan(localNbTokens, outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)], mType, context_buf_, stream, afterContexStr) == false, "Found Nan in " + afterContexStr); } } else // generation stage; max_context_q_len == input_seq_len == 1 { TLLM_CHECK_WITH_INFO(useKVCache(), "KV-cache-less is only supported for context"); int batch_beam = localNbSeq; TLLM_CHECK(batch_beam % beamWidth == 0); int32_t const num_requests = batch_beam / beamWidth; int const* cache_indir = beamWidth == 1 ? nullptr : reinterpret_cast(inputs[getIdx(IdxEntry::CACHE_INDIR)]); int const* host_context_lengths = mRemovePadding ? reinterpret_cast(inputs[getIdx(IdxEntry::HOST_CONTEXT_LENGTH)]) : nullptr; // Medusa: the max input sequence length if variable sequence length is needed. int const input_seq_length = getGenerationInputSequenceLength(inputDesc, localNbSeq, localNbTokens); auto qkvDims = inputDesc[getIdx(IdxEntry::QKV_TENSOR)].dims; TLLM_CHECK_WITH_INFO(input_seq_length == 1 || mIsSpecDecodingEnabled, "Only speculative decoding mode supports input length > 1 in the generation phase, input_seq_length=%d, " "mIsSpecDecodingEnabled=%s, nDims=%d, (" FMT_DIM ", " FMT_DIM ", " FMT_DIM ")", input_seq_length, mIsSpecDecodingEnabled ? "true" : "false", qkvDims.nbDims, qkvDims.d[0], qkvDims.d[1], qkvDims.d[2]); TLLM_CHECK_WITH_INFO( input_seq_length == num_spec_decoding_tokens + 1, "The generation input length is not expected."); EnqueueGenerationParams enqueue_params{attention_input, qkv_bias, input_seq_length, sequence_kv_length, max_context_kv_len, beamWidth, context_q_lengths, kv_scale_orig_quant, kv_scale_quant_orig, attention_output_orig_quant, rotary_embedding_scaling_factors, alibi_slopes, context_buf_, key_value_cache, block_offsets, host_primary_pool_pointer, host_secondary_pool_pointer, max_attention_window_size, cyclic_attention_window_size, sink_token_length, num_requests, max_blocks_per_sequence, cache_indir, mMultiBlockSemaphores.get(), workspace, max_context_kv_len_list}; enqueue_params.host_context_lengths = host_context_lengths; if (isRelativePosition()) { enqueue_params.relative_attention_bias = static_cast(inputs[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)]); enqueue_params.relative_attention_bias_stride = inputDesc[getIdx(IdxEntry::RELATIVE_ATTENTION_BIAS)].dims.d[1]; // max_seq_len or num_buckets } if (isCrossAttention()) { enqueue_params.encoder_input_lengths = reinterpret_cast(inputs[getIdx(IdxEntry::ENCODER_INPUT_LENGTH)]) + seqIdxBeg; } if (mIsSpecDecodingEnabled) { enqueue_params.spec_decoding_packed_mask = spec_decoding_packed_mask; enqueue_params.spec_decoding_position_offsets = spec_decoding_position_offsets; enqueue_params.spec_decoding_generation_lengths = spec_decoding_generation_lengths; } enqueue_params.total_num_input_tokens = localNbTokens; enqueueGeneration(enqueue_params, stream); { std::string const afterGenStr = "gen attention at layer " + std::to_string(mLayerIdx); TLLM_CHECK_DEBUG_WITH_INFO(tensorrt_llm::runtime::utils::tensorHasNan(localNbTokens, outputDesc[0].dims.d[getPackedTensorHiddenDimIndex(mRemovePadding)], mType, context_buf_, stream, afterGenStr) == false, "Found Nan in " + afterGenStr); } } return 0; } template int GPTAttentionPlugin::enqueueDispatchKVCacheType(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) { if (mPagedKVCache) { return enqueueImpl(inputDesc, outputDesc, inputs, outputs, workspace, stream); } else { return enqueueImpl(inputDesc, outputDesc, inputs, outputs, workspace, stream); } return 0; } int GPTAttentionPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept { if (isBuilding()) { return 0; } if (mType == nvinfer1::DataType::kHALF) { return enqueueDispatchKVCacheType(inputDesc, outputDesc, inputs, outputs, workspace, stream); } else if (mType == nvinfer1::DataType::kFLOAT) { return enqueueDispatchKVCacheType(inputDesc, outputDesc, inputs, outputs, workspace, stream); } #ifdef ENABLE_BF16 else if (mType == nvinfer1::DataType::kBF16) { return enqueueDispatchKVCacheType<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream); } #endif return 0; } // IPluginV2Ext Methods nvinfer1::DataType GPTAttentionPlugin::getOutputDataType( int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept { TLLM_CHECK(index == 0 || (!mPagedKVCache && index == 1)); if (index == 0) { return mFP8ContextFMHA && mEnableContextFMHA ? nvinfer1::DataType::kFP8 : inputTypes[getIdx(IdxEntry::QKV_TENSOR)]; } else { return inputTypes[getIdx(IdxEntry::PAST_KEY_VALUE)]; } } // IPluginV2 Methods char const* GPTAttentionPlugin::getPluginType() const noexcept { return GPT_ATTENTION_PLUGIN_NAME; } char const* GPTAttentionPlugin::getPluginVersion() const noexcept { return GPT_ATTENTION_PLUGIN_VERSION; } int GPTAttentionPlugin::getNbOutputs() const noexcept { return (mPagedKVCache || !useKVCache()) ? 1 : 2; } size_t GPTAttentionPlugin::getSerializationSize() const noexcept { return GPTAttentionPluginCommon::getCommonSerializationSize(); } void GPTAttentionPlugin::serialize(void* buffer) const noexcept { GPTAttentionPluginCommon::serializeCommon(buffer); } /////////////// GPTAttentionPluginCreator::GPTAttentionPluginCreator() : GPTAttentionPluginCreatorCommon() { mPluginAttributes.emplace_back(PluginField("in_flight_batching", nullptr, PluginFieldType::kINT8, 0)); mFC.nbFields = mPluginAttributes.size(); mFC.fields = mPluginAttributes.data(); } char const* GPTAttentionPluginCreator::getPluginName() const noexcept { return GPT_ATTENTION_PLUGIN_NAME; } char const* GPTAttentionPluginCreator::getPluginVersion() const noexcept { return GPT_ATTENTION_PLUGIN_VERSION; } PluginFieldCollection const* GPTAttentionPluginCreator::getFieldNames() noexcept { return &mFC; } IPluginV2* GPTAttentionPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept { PluginFieldParser p{fc->nbFields, fc->fields}; try { auto* obj = new GPTAttentionPlugin(p.getScalar("layer_idx").value(), p.getScalar("num_heads").value(), p.getScalar("vision_start").value(), p.getScalar("vision_length").value(), p.getScalar("num_kv_heads").value(), p.getScalar("head_size").value(), p.getScalar("unidirectional").value(), p.getScalar("q_scaling").value(), p.getScalar("qk_tanh_scale").value(), static_cast(p.getScalar("position_embedding_type").value()), p.getScalar("rotary_embedding_dim").value(), p.getScalar("rotary_embedding_base").value(), static_cast(p.getScalar("rotary_embedding_scale_type").value()), p.getScalar("rotary_embedding_scale").value(), p.getScalar("rotary_embedding_short_m_scale").value(), p.getScalar("rotary_embedding_long_m_scale").value(), p.getScalar("rotary_embedding_max_positions").value(), p.getScalar("rotary_embedding_original_max_positions").value(), static_cast(p.getScalar("tp_size").value()), static_cast(p.getScalar("tp_rank").value()), static_cast(p.getScalar("unfuse_qkv_gemm").value()), static_cast(p.getScalar("context_fmha_type").value()), static_cast(p.getScalar("multi_block_mode").value()), static_cast(p.getScalar("enable_xqa").value()), p.getScalar("kv_cache_quant_mode").value(), static_cast(p.getScalar("remove_input_padding").value()), static_cast(p.getScalar("mask_type").value()), BlockSparseParams{p.getScalar("block_sparse_block_size").value(), static_cast(p.getScalar("block_sparse_homo_head_pattern").value()), p.getScalar("block_sparse_num_local_blocks").value(), p.getScalar("block_sparse_vertical_stride").value()}, static_cast(p.getScalar("paged_kv_cache").value()), p.getScalar("tokens_per_block").value(), static_cast(p.getScalar("type_id").value()), p.getScalar("max_context_length").value(), static_cast(p.getScalar("qkv_bias_enabled").value()), static_cast(p.getScalar("do_cross_attention").value()), static_cast(p.getScalar("max_distance").value()), static_cast(p.getScalar("pos_shift_enabled").value()), static_cast(p.getScalar("dense_context_fmha").value()), static_cast(p.getScalar("use_paged_context_fmha").value()), static_cast(p.getScalar("use_fp8_context_fmha").value()), static_cast(p.getScalar("use_cache").value()), static_cast(p.getScalar("is_spec_decoding_enabled").value())); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; } IPluginV2* GPTAttentionPluginCreator::deserializePlugin( char const* name, void const* serialData, size_t serialLength) noexcept { // This object will be deleted when the network is destroyed, which will // call GPTAttentionPlugin::destroy() try { auto* obj = new GPTAttentionPlugin(serialData, serialLength); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; }