# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import traceback from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import safetensors from transformers import AutoModelForCausalLM from ...._utils import pad_vocab_size from ....functional import PositionEmbeddingType, Tensor from ....layers import (MLP, Attention, AttentionMaskType, BlockSparseAttnParams, Embedding, LayerNorm, ParallelLMHead) from ....module import Module from ...modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig) from .convert import convert_hf_config, convert_hf_weights class Phi3SmallDecoderLayer(Module): def __init__(self, config: PretrainedConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx tp_group = config.mapping.tp_group tp_size = config.mapping.tp_size self.gegelu_limit = config.gegelu_limit self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) # MuP uses norm_factor=attention_head_size (rather than sqrt(attention_head_size)) # We achieve this using q_scaling = sqrt(attention_head_size) hidden_size = config.hidden_size num_attention_heads = config.num_attention_heads attention_head_size = hidden_size / num_attention_heads q_scaling = attention_head_size**.5 block_sparse = ( (layer_idx + 1) % config.dense_attention_every_n_layers) != 0 attention_mask_type = AttentionMaskType.blocksparse if block_sparse else AttentionMaskType.causal block_sparse_attn_params = BlockSparseAttnParams( config.blocksparse_block_size, config.blocksparse_homo_head_pattern, config.blocksparse_num_local_blocks, config.blocksparse_vertical_stride) layers_range = config.mapping.pp_layers(config.num_hidden_layers) local_layer_idx = layer_idx - layers_range[0] position_embedding_type = PositionEmbeddingType.rope_gpt_neox original_max_position_embeddings = config.max_position_embeddings rope_scaling_short_factors, rope_scaling_long_factors = 1.0, 1.0 rope_scaling_short_mscale, rope_scaling_long_mscale = 1.0, 1.0 if hasattr(config, "longrope_scaling_short_factors"): rope_scaling_short_factors = np.asarray( config.longrope_scaling_short_factors).astype(np.float32) rope_scaling_long_factors = np.asarray( config.longrope_scaling_long_factors).astype(np.float32) rope_scaling_short_mscale = config.longrope_short_mscale rope_scaling_long_mscale = config.longrope_long_mscale position_embedding_type = PositionEmbeddingType.long_rope original_max_position_embeddings = config.original_max_position_embeddings self.attention = Attention( local_layer_idx=local_layer_idx, hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, num_kv_heads=config.num_kv_heads, position_embedding_type=position_embedding_type, rotary_embedding_base=config.rotary_embedding_base, max_position_embeddings=config.max_position_embeddings, original_max_position_embeddings=original_max_position_embeddings, dtype=config.dtype, attention_mask_type=attention_mask_type, bias=True, q_scaling=q_scaling, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode, rope_scaling_short_factors=rope_scaling_short_factors, rope_scaling_long_factors=rope_scaling_long_factors, rope_scaling_short_mscale=rope_scaling_short_mscale, rope_scaling_long_mscale=rope_scaling_long_mscale, block_sparse_params=block_sparse_attn_params) self.post_layernorm = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) self.mlp = MLP(hidden_size=config.hidden_size, ffn_hidden_size=config.intermediate_size, hidden_act=config.hidden_act, dtype=config.dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode) def forward( self, hidden_states: Tensor, attention_mask=None, use_cache=False, kv_cache_params=None, attention_params=None, ): residual = hidden_states input_layernorm_output = self.input_layernorm(hidden_states) # Self attention attention_output = self.attention( input_layernorm_output, attention_mask=attention_mask, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params, ) if use_cache: attention_output, presents = attention_output hidden_states = residual + attention_output # Fully connected residual = hidden_states hidden_states = self.post_layernorm(hidden_states) hidden_states = self.mlp(hidden_states, gegelu_limit=self.gegelu_limit) hidden_states = residual + hidden_states if use_cache: return (hidden_states, presents) return hidden_states class Phi3SmallModel(Module): def __init__(self, config: PretrainedConfig): super().__init__() self.vocab_embedding = Embedding(num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(Phi3SmallDecoderLayer, config) self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) self.mup_embedding_multiplier = config.mup_embedding_multiplier def forward( self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, ): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *args) if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0: hidden_states = hidden_states * self.mup_embedding_multiplier hidden_states = self.layers( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, ) if use_cache: hidden_states, presents = hidden_states hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class Phi3SmallForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): transformer = Phi3SmallModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) lm_head = ParallelLMHead(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) super().__init__(config, transformer, lm_head) @classmethod def convert_hf_checkpoint(cls, model_dir, dtype, output_dir, args=None): ''' Convert Huggingface checkpoint to TRT-LLM checkpoint ''' hf_model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype="auto", trust_remote_code=True) config = convert_hf_config(hf_model.config, dtype, args) with open(os.path.join(output_dir, 'config.json'), 'w') as f: json.dump(config, f, indent=4) def covert_and_save(rank): weights = convert_hf_weights(hf_model, config, args, rank) safetensors.torch.save_file( weights, os.path.join(output_dir, f'rank{rank}.safetensors')) world_size = args.tp_size * args.pp_size if args.workers == 1: for rank in range(world_size): covert_and_save(rank) else: with ThreadPoolExecutor(max_workers=args.workers) as p: futures = [ p.submit(covert_and_save, rank) for rank in range(world_size) ] exceptions = [] for future in as_completed(futures): try: future.result() except Exception as e: traceback.print_exc() exceptions.append(e) assert len( exceptions ) == 0, "Checkpoint conversion failed, please check error log."