import argparse import os import time import traceback from concurrent.futures import ThreadPoolExecutor, as_completed import tensorrt_llm from tensorrt_llm._utils import release_gc from tensorrt_llm.logger import logger from tensorrt_llm.mapping import Mapping from tensorrt_llm.models import LlavaNextVisionWrapper from tensorrt_llm.models.modeling_utils import QuantConfig def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--model_dir', type=str, required=True, default=None) parser.add_argument( '--vision_tp_size', type=int, default=1, help='N-way tensor parallelism size for the vision tower') parser.add_argument( '--vision_cp_size', type=int, default=1, help='N-way context parallelism size for the vision tower') parser.add_argument('--dtype', type=str, default='float16', choices=['float32', 'bfloat16', 'float16']) parser.add_argument('--load_by_shard', action='store_true', help='Load a pretrained model shard-by-shard.') parser.add_argument("--load_model_on_cpu", action="store_true") parser.add_argument('--output_dir', type=str, default='tllm_checkpoint', help='The path to save the TensorRT-LLM checkpoint') parser.add_argument( '--workers', type=int, default=1, help='The number of workers for converting checkpoint in parallel') parser.add_argument( '--save_config_only', action="store_true", default=False, help= 'Only save the model config w/o read and converting weights, be careful, this is for debug only' ) parser.add_argument('--log_level', type=str, default='info') args = parser.parse_args() return args def args_to_build_options(args): return { 'load_model_on_cpu': args.load_model_on_cpu, } def convert_and_save_hf(args): model_dir = args.model_dir load_by_shard = args.load_by_shard world_size = args.vision_tp_size * args.vision_cp_size # Need to convert the cli args to the kay-value pairs and override them in the generate config dict. # Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now, # before the refactor is done. override_fields = {} override_fields.update(args_to_build_options(args)) quant_config = QuantConfig() # When not loading by shard, preload one complete model and then slice per rank weights from this # this saves the disk reloading time def convert_and_save_rank(args, rank): mapping = Mapping(world_size=world_size, rank=rank, tp_size=args.vision_tp_size, cp_size=args.vision_cp_size) tik = time.time() llava_next_vision_wrapper = LlavaNextVisionWrapper.from_hugging_face( model_dir, args.dtype, mapping=mapping, quant_config=quant_config, load_by_shard=load_by_shard, **override_fields, ) print(f'Total time of reading and converting {time.time()-tik} s') tik = time.time() llava_next_vision_wrapper.save_checkpoint(args.output_dir, save_config=(rank == 0)) del llava_next_vision_wrapper print(f'Total time of saving checkpoint {time.time()-tik} s') execute(args.workers, [convert_and_save_rank] * world_size, args) release_gc() def execute(workers, func, args): if workers == 1: for rank, f in enumerate(func): f(args, rank) else: with ThreadPoolExecutor(max_workers=workers) as p: futures = [p.submit(f, args, rank) for rank, f in enumerate(func)] exceptions = [] for future in as_completed(futures): try: future.result() except Exception as e: traceback.print_exc() exceptions.append(e) assert len( exceptions ) == 0, "Checkpoint conversion failed, please check error log." def main(): print(tensorrt_llm.__version__) args = parse_arguments() logger.set_level(args.log_level) tik = time.time() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) convert_and_save_hf(args) tok = time.time() t = time.strftime('%H:%M:%S', time.gmtime(tok - tik)) print(f'Total time of converting checkpoints: {t}') if __name__ == '__main__': main()