/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/layers/baseLayer.h" #include "tensorrt_llm/layers/penaltyLayer.h" #include "tensorrt_llm/runtime/iTensor.h" namespace tc = tensorrt_llm::common; namespace tensorrt_llm::layers { template class DynamicDecodeLayer : public BaseLayer { using Base = BaseLayer; public: DynamicDecodeLayer(executor::DecodingMode const& mode, DecoderDomain const& decodingDomain, std::shared_ptr bufferManager); void setup(runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, runtime::IBuffer::SharedConstPtr batchSlots, std::shared_ptr const& setupParams) override; void forwardAsync(std::shared_ptr const& outputs, std::shared_ptr const& inputs) override; void forwardSync(std::shared_ptr const& outputs, std::shared_ptr const& inputs) override; // Function is only used by test. // It is guaranteed by LayersFactory that the first layer is the Penalty layer. T* getRuntimeLogitsDevice() { return dynamic_cast*>(mLayers[0].get())->getRuntimeLogitsDevice(); } private: void allocateBuffer(); void initialize(); void initializeLayers(); void prepareIdsPtrs(std::shared_ptr const& outputs, BufferConstPtr batchSlots, runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, runtime::SizeType32 maxSeqLen); static void prepareOutputData(std::shared_ptr const& outputs, std::shared_ptr const& params, TensorPtr const idsPtrsHost, BufferConstPtr batchSlots, runtime::SizeType32 batchSize, runtime::SizeType32 maxBatchSize, runtime::SizeType32 beamWidth, runtime::SizeType32 maxSeqLen, runtime::SizeType32 maxTokensPerStep, runtime::SizeType32 cyclicStep, bool outputLogProbs, cudaStream_t stream); private: using Base::mDecoderDomain; std::vector> mLayers; executor::DecodingMode mDecodingMode; TensorPtr mZeroParentIdsDevice; TensorPtr mIdsPtrHost; bool mHasDiffRuntimeArgs{false}; bool mOutputLogProbs{false}; runtime::SizeType32 mCyclicStep{0}; runtime::SizeType32 mRuntimeMaxSeqLen{0}; runtime::SizeType32 mConfiguredBeamWidth{-1}; }; } // namespace tensorrt_llm::layers