#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import os as _os import pathlib as _pl import platform as _pf import sys as _sys import typing as _tp from build_engines_utils import init_model_spec_module, run_command, wincopy init_model_spec_module() import model_spec import tensorrt_llm.bindings as _tb def build_engine(weight_dir: _pl.Path, ckpt_dir: _pl.Path, engine_dir: _pl.Path, *args): convert_args = [ _sys.executable, "examples/recurrentgemma/convert_checkpoint.py" ] + (['--model_dir', str(weight_dir)] if weight_dir else []) + [ '--output_dir', str(ckpt_dir), '--ckpt_type=hf', '--dtype=float16', ] run_command(convert_args) build_args = ["trtllm-build"] + ['--checkpoint_dir', str(ckpt_dir)] + [ '--output_dir', str(engine_dir), '--gpt_attention_plugin=float16', '--paged_kv_cache=enable', '--gemm_plugin=float16', '--max_batch_size=8', '--max_input_len=924', '--max_seq_len=1024', '--max_beam_width=1', ] + list(args) run_command(build_args) def build_engines(model_cache: _tp.Optional[str] = None): resources_dir = _pl.Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' model_name = 'recurrentgemma-2b' hf_dir = models_dir / model_name # Clone or update the model directory without lfs if model_cache: print("Copy model from model_cache") model_cache_dir = _pl.Path(model_cache) / 'recurrentgemma' / model_name print(model_cache_dir) assert (model_cache_dir.is_dir()) if _pf.system() == "Windows": wincopy(source=str(model_cache_dir), dest=model_name, isdir=True, cwd=models_dir) else: run_command( ["rsync", "-av", str(model_cache_dir), "."], cwd=models_dir) else: if not hf_dir.is_dir(): if _pf.system() == "Windows": url_prefix = "" else: url_prefix = "file://" model_url = "https://huggingface.co/google/recurrentgemma-2b" run_command([ "git", "clone", model_url, "--single-branch", "--no-local", model_name ], cwd=models_dir, env={ **_os.environ, "GIT_LFS_SKIP_SMUDGE": "1" }) assert (hf_dir.is_dir()) # Download the model file model_file_name = "*" if not model_cache: run_command(["git", "lfs", "pull", "--include", model_file_name], cwd=hf_dir) tp_size = 1 pp_size = 1 tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu" ckpt_dir = models_dir / 'rt_ckpt' / model_name engine_dir = models_dir / 'rt_engine' / model_name python_exe = _sys.executable run_command([python_exe, "-m", "pip", "install", "transformers>=4.40.0"], env=_os.environ, timeout=300) input_file = 'input_tokens.npy' model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.use_packed_input() model_spec_obj.set_kv_cache_type(model_spec.KVCacheType.PAGED) print("\nBuilding fp16-plugin-packed-paged engine") build_engine(hf_dir, ckpt_dir / model_spec_obj.get_model_path() / tp_pp_dir, engine_dir / model_spec_obj.get_model_path() / tp_pp_dir, '--remove_input_padding=enable', '--paged_state=enable') # Restore transformers version run_command([python_exe, "-m", "pip", "uninstall", "transformers", "-y"], env=_os.environ, timeout=300) run_command([python_exe, "-m", "pip", "install", "transformers==4.38.2"], env=_os.environ, timeout=300) print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") build_engines(**vars(parser.parse_args()))