# Multi-Modal This document shows how to run multimodal pipelines with TensorRT-LLM, e.g. from image+text input modalities to text output. Multimodal models' LLM part has an additional parameter `--max_multimodal_len` compared to LLM-only build commands. Under the hood, `max_multimodal_len` and `max_prompt_embedding_table_size` are effectively the same concept, i.e., prepended/concatenated embeddings (either multimodal feature embeddings or prompt tuning embeddings) to the LLM input embeddings. The multimodal features from the visual encoder of shape `[batch_size, num_visual_features, visual_hidden_dim]` is flattened as `[batch_size * num_visual_features, visual_hidden_dim]` and passed like a prompt embedding table. We first describe how to run each model on a single GPU. We then provide general guidelines on using tensor parallelism for the LLM part of the pipeline. - [BLIP2](#blip2) - [CogVLM](#cogvlm) - [Deplot](#deplot) - [Fuyu](#fuyu) - [Kosmos-2](#kosmos-2) - [LLaVA, LLaVa-NeXT and VILA](#llava-llava-next-and-vila) - [NeVA](#neva) - [Nougat](#nougat) - [Phi-3-vision](#phi-3-vision) - [Video NeVA](#video-neva) - [Enabling tensor parallelism for multi-GPU](#enabling-tensor-parallelism-for-multi-gpu) ## BLIP2 This BLIP section covers both BLIP2-OPT and BLIP2-T5, with minor changes needed when switching the LLM backbone. 1. Download Huggingface weights and convert original checkpoint to TRT-LLM checkpoint format following example in `examples/opt/README.md` and `examples/enc_dec/README.md`. ```bash export MODEL_NAME="blip2-opt-2.7b" # options: blip2-opt-6.7b, blip2-flan-t5-xl, blip2-flan-t5-xxl git clone https://huggingface.co/Salesforce/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` For BLIP2-OPT family, ```bash python ../opt/convert_checkpoint.py --model_type blip2 \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 ``` For BLIP2-T5 family, ```bash python ../enc_dec/convert_checkpoint.py --model_type blip2 \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/bfloat16 \ --tp_size 1 \ --pp_size 1 \ --dtype bfloat16 ``` 2. Build TRT-LLM engine from TRT-LLM checkpoint For BLIP2-OPT family, ```bash trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_seq_len 1024 \ --max_input_len 924 \ --max_multimodal_len 256 # 8 (max_batch_size) * 32 (num_visual_features) ``` For BLIP2-T5 family, ```bash trtllm-build --checkpoint_dir tmp/trt_models/${MODEL_NAME}/bfloat16/encoder \ --output_dir tmp/trt_engines/${MODEL_NAME}/bfloat16/encoder \ --paged_kv_cache disable \ --moe_plugin disable \ --enable_xqa disable \ --gemm_plugin bfloat16 \ --bert_attention_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --remove_input_padding enable \ --context_fmha disable \ --max_beam_width 1 \ --max_batch_size 8 \ --max_input_len 924 \ --max_multimodal_len 256 # 8 (max_batch_size) * 32 (num_visual_features) trtllm-build --checkpoint_dir tmp/trt_models/${MODEL_NAME}/bfloat16/decoder \ --output_dir tmp/trt_engines/${MODEL_NAME}/bfloat16/decoder \ --paged_kv_cache disable \ --moe_plugin disable \ --enable_xqa disable \ --gemm_plugin bfloat16 \ --bert_attention_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --remove_input_padding enable \ --context_fmha disable \ --max_beam_width 1 \ --max_batch_size 8 \ --max_seq_len 1024 \ --max_encoder_input_len 924 \ --max_input_len 1 # Same command for decoder but don't set --max_multimodal_len ``` **NOTE**: `max_multimodal_len = max_batch_size * num_visual_features`, so if you change max_batch_size, max multimodal length **MUST** be changed accordingly. 3. Build TensorRT engines for vision encoders ```bash python build_visual_engine.py --model_type blip2 --model_path tmp/hf_models/${MODEL_NAME} --max_batch_size 8 ``` The built engines are located in `./visual_engines/${MODEL_NAME}`. To run the BLIP2 pipeline with batch size > 1, change `--max_batch_size` argument to `build_visual_engine.py` accordingly. 4. Assemble everything into BLIP2 pipeline For BLIP2-OPT family, ```bash python run.py \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu ``` For BLIP2-T5 family, ```bash python run.py \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/bfloat16 ``` 5. (Optional) INT8/INT4 weight-only quantization for OPT can be enabled using commands as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization): ```bash python ../opt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --use_weight_only \ --weight_only_precision int4 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ --max_input_len 924 \ --max_seq_len 1024 ``` The built OPT engines lie in `trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu`. You should use this directory as `--llm_engine_dir` argument to `run.py` **NOTE:** INT8/INT4 option is not supported for BLIP2-T5, because quantization support has not been added for encoder-decoder models yet. ## CogVLM Currently, CogVLM only support bfloat16 precision and doesn't support `remove_input_padding` feature. 1. Download Huggingface weights ```bash export MODEL_NAME="cogvlm-chat-hf" git clone https://huggingface.co/THUDM/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} export TOKENIZER_NAME="vicuna-7b-v1.5" git clone https://huggingface.co/lmsys/${TOKENIZER_NAME} tmp/hf_models/${TOKENIZER_NAME} ``` Because currently onnx doesn't support `xops.memory_efficient_attention`, we need to modify some source code of the huggingface CogVLM. ``` cd tmp/hf_models/${MODEL_NAME} sed -i '4s/.*//;40s/.*/ out = self.attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2).contiguous()/;41s/.*//;42s/.*//' visual.py # It will replace memory_efficient_attention with some basic ops ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/cogvlm` CogVLM uses a Vit encoder as LLM encoder and a modified Llama as decoder. ```bash python ../cogvlm/convert_checkpoint.py --model_dir tmp/hf_models/${MODEL_NAME} --output_dir ./tllm_checkpoint_1gpu_bf16 --dtype bfloat16 --use_prompt_tuning trtllm-build --checkpoint_dir ./tllm_checkpoint_1gpu_bf16 \ --output_dir ./tmp/cogvlm/trt_engines/bf16/1-gpu \ --gemm_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --context_fmha_fp32_acc enable \ --remove_input_padding disable \ --max_batch_size 48 \ --max_input_len 2048 \ --max_seq_len 3076 \ --paged_kv_cache disable \ --enable_xqa disable \ --bert_attention_plugin disable \ --moe_plugin disable \ --max_multimodal_len 61440 # 48 (max_batch_size) * 1280 (max_num_visual_features) ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_type cogvlm --model_path tmp/hf_models/${MODEL_NAME} --max_batch_size 48 python run.py \ --max_new_tokens 1000 \ --input_text " [INST] please describe this image in detail [/INST] " \ --hf_model_dir tmp/hf_models/${TOKENIZER_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir tmp/cogvlm/trt_engines/bf16/1-gpu \ --batch_size 1 \ --top_p 0.4 \ --top_k 1 \ --temperature 0.2 \ --repetition_penalty 1.2 ``` ## Deplot 1. Download Huggingface weights and convert original checkpoint to TRT-LLM checkpoint format following example in `examples/enc_dec/README.md`. ```bash export MODEL_NAME="deplot" git clone https://huggingface.co/google/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} python ../enc_dec/convert_checkpoint.py --model_type pix2struct \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/float16 \ --tp_size 1 \ --pp_size 1 \ --dtype float16 ``` 2. Build TRT-LLM engine from TRT-LLM checkpoint ```bash trtllm-build --checkpoint_dir tmp/trt_models/${MODEL_NAME}/float16/decoder \ --output_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/float16/decoder \ --paged_kv_cache disable \ --moe_plugin disable \ --enable_xqa disable \ --gemm_plugin float16 \ --bert_attention_plugin float16 \ --gpt_attention_plugin float16 \ --remove_input_padding enable \ --context_fmha disable \ --max_beam_width 1 \ --max_batch_size 8 \ --max_seq_len 2558 \ --max_encoder_input_len 2048 \ --max_input_len 1 ``` The built deplot engines are located in `./tmp/trt_engines/${MODEL_NAME}/1-gpu/float16`. 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_type pix2struct --model_path tmp/hf_models/${MODEL_NAME} --max_batch_size 8 ``` The built engines are located in `./visual_engines/${MODEL_NAME}`. To run the deplot pipeline with batch size > 1, change `--max_batch_size` argument to `build_visual_engine.py` accordingly. 4. Assemble everything into deplot pipeline ```bash python run.py \ --max_new_tokens 100 \ --input_text "" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/float16 ``` ## Fuyu 1. Download Huggingface weights ```bash export MODEL_NAME="fuyu-8b" git clone https://huggingface.co/adept/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/gpt`. The LLM portion of Fuyu uses a Persimmon model ```bash python ../gpt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 \ --gpt_variant persimmon trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --use_fused_mlp \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 2048 ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_type fuyu --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/1-gpu/bfloat16 ``` ## Kosmos-2 1. Download Huggingface weights ```bash export MODEL_NAME="kosmos-2" git clone https://huggingface.co/microsoft/kosmos-2-patch14-224 tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/gpt`. ```bash python ../gpt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 \ --gpt_variant ${MODEL_NAME} trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 512 \ --max_seq_len 1024 \ --max_multimodal_len 64 # 1 (max_batch_size) * 64 (num_visual_features) ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_type kosmos-2 --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu ``` ## LLaVA, LLaVa-NeXT and VILA [LLaVA](https://github.com/haotian-liu/LLaVA) and [VILA](https://github.com/Efficient-Large-Model/VILA) are both visual language models (VLM) that can be deployed in TensorRT-LLM with many quantization options. [LLaVA-NeXT](https://huggingface.co/collections/llava-hf/llava-next-65f75c4afac77fd37dbbe6cf) is an extension of LLaVA. TRT-LLM currently supports [Mistral-7b](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and [ Nous-Hermes-2-Yi-34B](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) variant of LLaVA-NeXT. 1. Download Huggingface model weights. These models have both visual and LLM components unlike BLIP2 example which downloads only LLM components from Huggingface. For LLaVA, ```bash export MODEL_NAME="llava-1.5-7b-hf" # also llava-1.5-13b-hf git clone https://huggingface.co/llava-hf/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` For LLaVA-NeXT, ```bash export MODEL_NAME="llava-v1.6-mistral-7b-hf" #for 34b variant "llava-v1.6-34b-hf" git clone https://huggingface.co/llava-hf/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` For VILA, we need a few more steps until it is added to HF model zoo ```bash # install the following dependency pip install -r requirements-vila.txt # clone original VILA repo export VILA_PATH="tmp/hf_models/VILA" git clone https://github.com/Efficient-Large-Model/VILA.git ${VILA_PATH} # download VILA checkpoints export MODEL_NAME="vila1.5-3b" git clone https://huggingface.co/Efficient-Large-Model/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Generate TRT-LLM engine for LLaMA following example in `examples/llama/README.md` ```bash python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --use_fused_mlp \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 576 # 1 (max_batch_size) * 576 (num_visual_features) for LLaVA trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 4096 \ --max_seq_len 5120 \ --max_num_tokens 4096 \ # 1 (max_batch_size) * 4096 (max_input_len) --max_multimodal_len 4096 \ # 1 (max_batch_size) * 4096 (max_input_len) --use_fused_mlp trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --use_fused_mlp \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 4096 # 1 (max_batch_size) * 4096 (num_visual_features) for VILA ``` Note: do not use `--use_fused_mlp` flag in quantization mode. 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_path tmp/hf_models/${MODEL_NAME} --model_type llava # for LLaVA python build_visual_engine.py --model_path tmp/hf_models/${MODEL_NAME} --model_type llava_next --model_path tmp/hf_models/${MODEL_NAME} --max_batch_size 5 # 1 (max_batch_size) * 5 (because LLAVA-NeXT visual encoder can have at most 5 patches) # for LLaVA-NeXT python build_visual_engine.py --model_path tmp/hf_models/${MODEL_NAME} --model_type vila --vila_path ${VILA_PATH} # for VILA ``` ```bash python run.py \ --max_new_tokens 30 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --input_text "Question: which city is this? Answer:" # for LLaVA and for LLaVA-NeXT ``` For VILA, you can use either local file or web url as input images. Suppose you have a local image `av.png` downloaded from `https://github.com/Efficient-Large-Model/VILA/blob/main/demo_trt_llm/av.png` and the url of `merlion.png` ```bash wget -O av.png https://raw.githubusercontent.com/Efficient-Large-Model/VILA/main/demo_trt_llm/av.png python run.py \ --max_new_tokens 100 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --image_path=av.png,https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png \ --input_text="\n\n Please elaborate what you see in the images?" \ --batch_size=1 # for VILA mode 1 python run.py \ --max_new_tokens 100 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --image_path=av.png,https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png \ --input_text="\n Please elaborate what you see in the images?" \ --batch_size=2 # for VILA mode 2 ``` Note that VILA can support different modes in terms of batching: - Mode 1: if you want to query N images as a whole using a prompt, `--batch_size=1` should be used (which is the default value). Example is given above. - Mode 2: if you want to query N images individually using the same prompt (replicated), `--batch_size=N` should be used. Don't forget to set the `--max_batch_size` and `--max_multimodal_len` during engine building. Note: use `--run_profiling` for performance measurement, use `--check_accuracy` for accuracy check. 4. (Optional) INT8/INT4 weight-only quantization for LLaMA can be enabled as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization): ```bash python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --use_weight_only \ --weight_only_precision int4 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 1024 \ --max_seq_len 1124 \ --max_multimodal_len 576 # for LLaVA trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --use_fused_mlp \ --max_batch_size 1 \ --max_input_len 1024 \ --max_seq_len 1124 \ --max_multimodal_len 4096 # for VILA ``` The built engines lie in `trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu`. You should use this directory as `--llm_engine_dir` argument to `run.py` 5. (Optional) One can also use LLaVA/VILA with other quantization options, like SmoothQuant and INT4 AWQ, that are supported by LLaMA. Instructions in LLaMA [README](../llama/README.md) to enable SmoothQuant and INT4 AWQ can be re-used to generate quantized TRT engines for LLM component of LLaVA/VILA. For example, ```bash python ../quantization/quantize.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu \ --dtype float16 \ --qformat int4_awq \ --calib_size 32 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_awq/1-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 1024 \ --max_seq_len 1124 \ --max_multimodal_len 576 # for LLaVA trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_awq/1-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 4096 # for VILA ``` ## NeVA [NeVA](https://docs.nvidia.com/nemo-framework/user-guide/latest/multimodalmodels/neva/index.html) is a groundbreaking addition to the NeMo Multimodal ecosystem. This model seamlessly integrates large language-centric models with a vision encoder, that can be deployed in TensorRT-LLM. 1. Generate TRT-LLM engine for NVGPT following example in `examples/gpt/README.md`. To adhere to the NVGPT conventions of the conversion script, some layer keys have to be remapped using `--nemo_rename_key`. ```bash export MODEL_NAME="neva" python ../gpt/convert_checkpoint.py \ --nemo_ckpt_path ./${MODEL_NAME}.nemo \ --dtype bfloat16 \ --output_dir tmp/trt_models/${MODEL_NAME} \ --nemo_rename_key model:model.language_model \ attention.linear_qkv.layer_norm_bias:input_layernorm.bias \ attention.linear_qkv.layer_norm_weight:input_layernorm.weight \ mlp.linear_fc1.layer_norm_bias:post_attention_layernorm.bias \ mlp.linear_fc1.layer_norm_weight:post_attention_layernorm.weight \ linear_qkv:query_key_value \ linear_fc1:dense_h_to_4h \ linear_fc2:dense_4h_to_h \ linear_proj:dense \ decoder:encoder trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME} \ --output_dir trt_engines/${MODEL_NAME}/bf16/1-gpu \ --gpt_attention_plugin bfloat16 \ --gemm_plugin bfloat16 \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 729 # 1 (max_batch_size) * 729 (num_visual_features) ``` 2. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_path ./${MODEL_NAME}.nemo --model_type neva ``` ```bash python run.py \ --max_new_tokens 30 \ --hf_model_dir tmp/trt_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/bf16/1-gpu \ --input_text "Question: which city is this? Answer:" ``` Note: use `--run_profiling` for performance measurement, use `--check_accuracy` for accuracy check. ## Nougat 1. Download Huggingface weights ```bash export MODEL_NAME="nougat-base" # also nougat-small git clone https://huggingface.co/facebook/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/enc_dec` Nougat uses mBART architecture but replaces the LLM encoder with a Swin Transformer encoder. To achieve this, we add an extra `--nougat` flag (over mBART example) to `convert_checkpoint.py` in `examples/enc_dec` and `trtllm-build`. ```bash python ../enc_dec/convert_checkpoint.py --model_type bart \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/bfloat16 \ --tp_size 1 \ --pp_size 1 \ --dtype bfloat16 \ --nougat trtllm-build --checkpoint_dir tmp/trt_models/${MODEL_NAME}/bfloat16/decoder \ --output_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16/decoder \ --paged_kv_cache disable \ --moe_plugin disable \ --enable_xqa disable \ --gemm_plugin bfloat16 \ --bert_attention_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --remove_input_padding enable \ --max_beam_width 1 \ --max_batch_size 1 \ --max_seq_len 101 \ --max_input_len 1 \ --max_encoder_input_len 588 # 1 (max_batch_size) * 588 (num_visual_features) ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_type nougat --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir tmp/trt_engines/${MODEL_NAME}/1-gpu/bfloat16 ``` Note: Nougat models usually do not need a text prompt. ## Phi-3-vision 1. Download Huggingface weights ```bash export MODEL_NAME="Phi-3-vision-128k-instruct" git clone https://huggingface.co/microsoft/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/phi`. ```bash python ../gpt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 4096 \ --max_seq_len 4608 \ --max_multimodal_len 4096 ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_type phi-3-vision --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu/ \ --image_path=https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png ``` ## Video NeVA [Video NeVA](https://github.com/NVIDIA/NeMo/blob/main/docs/source/multimodal/mllm/video_neva.rst) is a groundbreaking addition to the NeMo Multimodal ecosystem that could work with video modality. This model seamlessly integrates large language-centric models with a vision encoder, that can be deployed in TensorRT-LLM. 1. Generate TRT-LLM engine for Nemotron model following example in `examples/nemotron/README.md`. To adhere to the NVGPT conventions of the conversion script. This will be used as our base LM for inference. ```bash pip install decord # used for loading video python3 ../quantization/quantize.py \ --nemo_ckpt_path /path/to/nemotron/model.nemo \ --dtype bfloat16 \ --batch_size 64 \ --qformat full_prec \ --output_dir nemotron-3/trt_ckpt/bf16/1-gpu trtllm-build \ --checkpoint_dir nemotron-3/trt_ckpt/bf16/1-gpu \ --output_dir trt_engines/nemotron-3/bf16/1-gpu \ --gpt_attention_plugin bfloat16 \ --gemm_plugin bfloat16 \ --max_batch_size 1 \ --max_input_len 4096 \ --max_seq_len 4352 \ --max_multimodal_len 3072 # 1 (max_batch_size) * (12 num_frames) * (256 image_token_len) ``` 2. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_path /path/to/video/neva/projector.nemo --model_type video-neva ``` ```bash python run.py \ --max_new_tokens 30 \ --hf_model_dir nemotron-3/trt_ckpt/bf16/1-gpu \ --visual_engine_dir visual_engines/video_neva_engine \ --llm_engine_dir trt_engines/nemotron-3/bf16/1-gpu \ --input_text "Question: what is in the video? Answer:" \ --video_path /path/to/your/local/video/file ``` Note: use `--run_profiling` for performance measurement, use `--check_accuracy` for accuracy check. ## Enabling tensor parallelism for multi-GPU The LLM part of the pipeline can be run on multiple GPUs using tensor parallelism. The visual encoder will be replicated on each GPU and operate in a data parallel fashion. To enable tensor parallelism, both weight conversion step (from Huggingface to FT format) and engine building step should use additional arguments. Finally `run.py` should be prefixed with `mpirun -n NUM_GPUS --allow-run-as-root`. The full set of commands to enable 2-way tensor parallelism for LLaVA is: ```bash export MODEL_NAME="llava-1.5-7b-hf" python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/2-gpu \ --dtype float16 --tp_size 2 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/2-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/2-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 2048 \ --max_seq_len 2560 \ --max_multimodal_len 576 python build_visual_engine.py --model_type llava --model_path tmp/hf_models/${MODEL_NAME} mpirun -n 2 --allow-run-as-root \ python run.py \ --max_new_tokens 30 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/2-gpu \ ```