/* * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & * AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "weightOnlyQuantMatmulPlugin.h" #include "tensorrt_llm/kernels/weightOnlyBatchedGemv/enabled.h" using namespace nvinfer1; using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels::cutlass_kernels; using tensorrt_llm::plugins::WeightOnlyQuantMatmulPluginCreator; using tensorrt_llm::plugins::WeightOnlyQuantMatmulPlugin; using tensorrt_llm::plugins::WeightOnlyQuantGemmPluginProfiler; using tensorrt_llm::plugins::read; using tensorrt_llm::plugins::write; static const char* WOQ_MATMUL_PLUGIN_VERSION{"1"}; static const char* WOQ_MATMUL_PLUGIN_NAME{"WeightOnlyQuantMatmul"}; PluginFieldCollection WeightOnlyQuantMatmulPluginCreator::mFC{}; std::vector WeightOnlyQuantMatmulPluginCreator::mPluginAttributes; void WeightOnlyQuantGemmPluginProfiler::runTactic(int m, int n, int k, const WeightOnlyQuantGemmPluginProfiler::Config& tactic, char* workspace, const cudaStream_t& stream) { const int originalN = n * (mWeightTypeId == 1 ? 4 : 8); half* actPtr = reinterpret_cast(workspace); int8_t* weightPtr = reinterpret_cast(nextWorkspacePtr(reinterpret_cast(actPtr), m * k * sizeof(half))); half* scalesPtr = reinterpret_cast( nextWorkspacePtr(reinterpret_cast(weightPtr), originalN * k * sizeof(int8_t))); half* outputPtr = reinterpret_cast(nextWorkspacePtr(reinterpret_cast(scalesPtr), originalN * sizeof(half))); char* workspacePtr = reinterpret_cast(nextWorkspacePtr(reinterpret_cast(outputPtr), m * originalN * sizeof(half))); const int wsSize = mRunner->getWorkspaceSize(m, n, k); if (mWeightTypeId == 1) { mRunner->gemm(actPtr, weightPtr, scalesPtr, outputPtr, m, originalN, k, tactic, workspacePtr, wsSize, stream); } else { mRunner->gemm(actPtr, reinterpret_cast(weightPtr), scalesPtr, outputPtr, m, originalN, k, tactic, workspacePtr, wsSize, stream); } } void WeightOnlyQuantGemmPluginProfiler::computeTmpSize(int maxM, int n, int k) { const int originalN = n * (mWeightTypeId == 1 ? 4 : 8); std::vector workspaces = { maxM * k * sizeof(half), // A originalN * k * sizeof(int8_t), // B originalN * sizeof(half), // scales maxM * originalN * sizeof(half), // C mRunner->getWorkspaceSize(maxM, n, k) // workspace }; size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size()); setTmpWorkspaceSizeInBytes(bytes); } std::vector WeightOnlyQuantGemmPluginProfiler::getTactics( int m, int n, int k) const { return mRunner->getConfigs(); } WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin( nvinfer1::DataType type, int weightTypeId, const WeightOnlyQuantMatmulPlugin::PluginProfilerPtr& pluginProfiler) : mPluginProfiler(pluginProfiler) { init(type, weightTypeId); } // Parameterized constructor WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin( const void* data, size_t length, const WeightOnlyQuantMatmulPlugin::PluginProfilerPtr& pluginProfiler) : mPluginProfiler(pluginProfiler) { const char *d = reinterpret_cast(data), *a = d; nvinfer1::DataType type; int weightTypeId = 0; read(d, type); read(d, weightTypeId); read(d, mDims); init(type, weightTypeId); mPluginProfiler->deserialize(d, mDims, mGemmId); TLLM_CHECK(d == a + length); } void WeightOnlyQuantMatmulPlugin::init(nvinfer1::DataType type, int weightTypeId) { mType = type; mWeightTypeId = weightTypeId; if (mType == nvinfer1::DataType::kHALF && mWeightTypeId == 1) { m_weightOnlyGemmRunner = std::make_shared< CutlassFpAIntBGemmRunner>(); mCudaKernelEnabled = tensorrt_llm::kernels::isWeightOnlyBatchedGemvEnabled(tensorrt_llm::kernels::WeightOnlyQuantType::Int8b); } else if (mType == nvinfer1::DataType::kHALF && mWeightTypeId == 2) { m_weightOnlyGemmRunner = std::make_shared< CutlassFpAIntBGemmRunner>(); mCudaKernelEnabled = tensorrt_llm::kernels::isWeightOnlyBatchedGemvEnabled(tensorrt_llm::kernels::WeightOnlyQuantType::Int4b); } else { TLLM_CHECK(false); } mPluginProfiler->setWeightTypeId(mWeightTypeId); mGemmId = GemmIdCore(mDims.n, mDims.k, mType); } // IPluginV2DynamicExt Methods nvinfer1::IPluginV2DynamicExt* WeightOnlyQuantMatmulPlugin::clone() const noexcept { auto* plugin = new WeightOnlyQuantMatmulPlugin(*this); return plugin; } void WeightOnlyQuantMatmulPlugin::configGemm() { mPluginProfiler->profileTactics(m_weightOnlyGemmRunner, mType, mDims, mGemmId); } nvinfer1::DimsExprs WeightOnlyQuantMatmulPlugin::getOutputDimensions( int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept { // input [m1, m2, m3, ... , k] // weight [k, n/4] for int8, [k, n/8] for int4 try { TLLM_CHECK(nbInputs == 3); TLLM_CHECK(outputIndex == 0); const int nbDimsA = inputs[0].nbDims; const int nbDimsB = inputs[1].nbDims; TLLM_CHECK(nbDimsA >= 2); TLLM_CHECK(nbDimsB == 2); DimsExprs ret; ret.nbDims = nbDimsA; for (int ii = 0; ii < nbDimsA - 1; ++ii) { ret.d[ii] = inputs[0].d[ii]; } if (mWeightTypeId == 1) { // int8 weight only quant ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() * 4); } else { // int4 weight only quant ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() * 8); } return ret; } catch (const std::exception& e) { caughtError(e); } return DimsExprs{}; } bool WeightOnlyQuantMatmulPlugin::supportsFormatCombination( int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept { switch (pos) { case 0: // activation return inOut[0].type == mType && inOut[0].format == TensorFormat::kLINEAR; case 1: // weights // FIXME // Dirty hack to overcome TRT int8/int4 limitatition with plugins // Weights are required to be float, but will be reinterpreted as int8/int4 in enqueue // Weights stored in checkpoint should have int8/int4 type // Because of the reinterpretation, input weights have shape 4/8 times smaller than required // in_channels has to be divisable by 4/8 return inOut[1].type == nvinfer1::DataType::kFLOAT && inOut[1].format == TensorFormat::kLINEAR; case 2: // scales channels return inOut[2].type == mType && inOut[2].format == TensorFormat::kLINEAR; case 3: // out return inOut[3].type == mType && inOut[3].format == TensorFormat::kLINEAR; default: // Never should be here assert(false); return false; } } void WeightOnlyQuantMatmulPlugin::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs, const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept { const auto minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies()); const auto maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies()); const int maxK = in[0].max.d[in[0].max.nbDims - 1]; const int maxN = in[1].max.d[1] * (mWeightTypeId == 1 ? 4 : 8); const auto K = maxK; const auto N = maxN / (mWeightTypeId == 1 ? 4 : 8); if (!mDims.isInitialized()) { mDims = {minM, maxM, N, K}; } mGemmId = {N, K, mType}; m_workspaceMaxSize = m_weightOnlyGemmRunner->getWorkspaceSize(maxM, maxN, maxK); } size_t WeightOnlyQuantMatmulPlugin::getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs, const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const noexcept { return m_workspaceMaxSize; } int WeightOnlyQuantMatmulPlugin::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc, const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept { // inputs // mat1 [M1, M2,..., K] // mat2 [K, N/4] for int8, [K, N/8] for int4 // scale_channels [N] // outputs // mat [M, N] int m = 1; for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii) { m *= inputDesc[0].dims.d[ii]; } const int n = inputDesc[1].dims.d[1]; const int k = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]; const int ws_size = m_weightOnlyGemmRunner->getWorkspaceSize(m, n, k); const auto& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId); TLLM_CHECK_WITH_INFO(bestTactic, "No valid SQ GEMM tactic"); if (mType == nvinfer1::DataType::kHALF && mWeightTypeId == 1) { if (m < SMALL_M_FAST_PATH && mCudaKernelEnabled) { // Use CUDA kernels for small batch size // The CUDA kernel is designed for ColumnMajorTileInterleave weight layout used in fpAIntB cutlass kernel // when sm >= 75 and the preprocessing of cutlass on sm70 does not interleave the weights. tensorrt_llm::kernels::WeightOnlyParams params{reinterpret_cast(inputs[1]), reinterpret_cast(inputs[2]), nullptr, reinterpret_cast(inputs[0]), nullptr, reinterpret_cast(outputs[0]), m, n * 4, k, 0}; tensorrt_llm::kernels::weight_only_batched_gemv_launcher(tensorrt_llm::kernels::WeightOnlyQuantType::Int8b, tensorrt_llm::kernels::WeightOnlyType::PerChannel, tensorrt_llm::kernels::WeightOnlyActivationType::Identity, params, stream); } else { m_weightOnlyGemmRunner->gemm(reinterpret_cast(inputs[0]), reinterpret_cast(inputs[1]), reinterpret_cast(inputs[2]), reinterpret_cast(outputs[0]), m, n * 4, k, *bestTactic, reinterpret_cast(workspace), ws_size, stream); } } else if (mType == nvinfer1::DataType::kHALF && mWeightTypeId == 2) { if (m < SMALL_M_FAST_PATH && mCudaKernelEnabled) { // Use CUDA kernels for small batch size // The CUDA kernel is designed for ColumnMajorTileInterleave weight layout used in fpAIntB cutlass kernel // when sm >= 75 and the preprocessing of cutlass on sm70 does not interleave the weights. tensorrt_llm::kernels::WeightOnlyParams params{reinterpret_cast(inputs[1]), reinterpret_cast(inputs[2]), nullptr, reinterpret_cast(inputs[0]), nullptr, reinterpret_cast(outputs[0]), m, n * 8, k, 0}; tensorrt_llm::kernels::weight_only_batched_gemv_launcher(tensorrt_llm::kernels::WeightOnlyQuantType::Int4b, tensorrt_llm::kernels::WeightOnlyType::PerChannel, tensorrt_llm::kernels::WeightOnlyActivationType::Identity, params, stream); } else { m_weightOnlyGemmRunner->gemm(reinterpret_cast(inputs[0]), reinterpret_cast(inputs[1]), reinterpret_cast(inputs[2]), reinterpret_cast(outputs[0]), m, n * 8, k, *bestTactic, reinterpret_cast(workspace), ws_size, stream); } } else { assert(false); } return 0; } // IPluginV2Ext Methods nvinfer1::DataType WeightOnlyQuantMatmulPlugin::getOutputDataType( int index, const nvinfer1::DataType* inputTypes, int nbInputs) const noexcept { TLLM_CHECK(index == 0); return mType; } // IPluginV2 Methods const char* WeightOnlyQuantMatmulPlugin::getPluginType() const noexcept { return WOQ_MATMUL_PLUGIN_NAME; } const char* WeightOnlyQuantMatmulPlugin::getPluginVersion() const noexcept { return WOQ_MATMUL_PLUGIN_VERSION; } int WeightOnlyQuantMatmulPlugin::getNbOutputs() const noexcept { return 1; } int WeightOnlyQuantMatmulPlugin::initialize() noexcept { configGemm(); return 0; } void WeightOnlyQuantMatmulPlugin::terminate() noexcept {} size_t WeightOnlyQuantMatmulPlugin::getSerializationSize() const noexcept { return sizeof(int) + // mWeightTypeId sizeof(nvinfer1::DataType) + // mType sizeof(mDims) + // Dimensions mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size } void WeightOnlyQuantMatmulPlugin::serialize(void* buffer) const noexcept { char *d = static_cast(buffer), *a = d; write(d, mType); write(d, mWeightTypeId); write(d, mDims); mPluginProfiler->serialize(d, mGemmId); assert(d == a + getSerializationSize()); } void WeightOnlyQuantMatmulPlugin::destroy() noexcept { // This gets called when the network containing plugin is destroyed delete this; } /////////////// WeightOnlyQuantMatmulPluginCreator::WeightOnlyQuantMatmulPluginCreator() { // Fill PluginFieldCollection with PluginField arguments metadata mPluginAttributes.clear(); mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32, 1)); mPluginAttributes.emplace_back(PluginField("weight_type_id", nullptr, PluginFieldType::kINT32, 1)); mFC.nbFields = mPluginAttributes.size(); mFC.fields = mPluginAttributes.data(); } const char* WeightOnlyQuantMatmulPluginCreator::getPluginName() const noexcept { return WOQ_MATMUL_PLUGIN_NAME; } const char* WeightOnlyQuantMatmulPluginCreator::getPluginVersion() const noexcept { return WOQ_MATMUL_PLUGIN_VERSION; } const PluginFieldCollection* WeightOnlyQuantMatmulPluginCreator::getFieldNames() noexcept { return &mFC; } IPluginV2* WeightOnlyQuantMatmulPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc) noexcept { const PluginField* fields = fc->fields; nvinfer1::DataType type; int weightTypeId; // Read configurations from each fields for (int i = 0; i < fc->nbFields; ++i) { const char* attrName = fields[i].name; if (!strcmp(attrName, "weight_type_id")) { TLLM_CHECK(fields[i].type == PluginFieldType::kINT32); weightTypeId = static_cast(*(static_cast(fields[i].data))); } else if (!strcmp(attrName, "type_id")) { TLLM_CHECK(fields[i].type == PluginFieldType::kINT32); type = static_cast(*(static_cast(fields[i].data))); } } try { // WeightOnlyGroupwiseQuantMatmulPluginCreator is unique and shared for an engine generation // Create plugin profiler with shared tactics map auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false); auto* obj = new WeightOnlyQuantMatmulPlugin(type, weightTypeId, pluginProfiler); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (const std::exception& e) { caughtError(e); } return nullptr; } IPluginV2* WeightOnlyQuantMatmulPluginCreator::deserializePlugin( const char* name, const void* serialData, size_t serialLength) noexcept { // This object will be deleted when the network is destroyed, which will // call WeightOnlyQuantMatmulPlugin::destroy() try { // Create plugin profiler with private tactics map which is read from the serialized engine auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true); auto* obj = new WeightOnlyQuantMatmulPlugin(serialData, serialLength, pluginProfiler); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (const std::exception& e) { caughtError(e); } return nullptr; }