/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/cudaStream.h" #include "tensorrt_llm/runtime/gptJsonConfig.h" #include "tensorrt_llm/runtime/iBuffer.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/loraCache.h" #include "tensorrt_llm/runtime/loraManager.h" #include "tensorrt_llm/runtime/loraModule.h" #include "tensorrt_llm/runtime/loraUtils.h" #include "tensorrt_llm/runtime/modelConfig.h" #include "tensorrt_llm/runtime/worldConfig.h" #include "tensorrt_llm/runtime/utils/numpyUtils.h" #include #include #include namespace fs = std::filesystem; namespace { auto const TEST_RESOURCE_PATH = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources/data"; auto const TEST_SOURCE_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/source.npy"; auto const TEST_DEST_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/target.npy"; auto const TEST_KEYS_LORA_TP1 = TEST_RESOURCE_PATH / "lora-test-weights-tp1/config.npy"; auto const TEST_SOURCE_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/source.npy"; auto const TEST_DEST_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/target.npy"; auto const TEST_KEYS_LORA_TP2 = TEST_RESOURCE_PATH / "lora-test-weights-tp2/config.npy"; auto const TEST_MODEL_CONFIG = TEST_RESOURCE_PATH / "test_model_lora_config.json"; } // namespace namespace tensorrt_llm::runtime { using TensorPtr = ITensor::SharedPtr; using PeftTable = LoraManager::PeftTable; class LoraManagerTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init) { protected: LoraManagerTest() : mModelConfig(1, 2, 0, 1, 4, nvinfer1::DataType::kFLOAT) { } void SetUp() override { mStream = std::make_unique(); mManager = std::make_unique(mStream); mWorldConfig = WorldConfig(2); mModelConfig.setLoraModules(LoraModule::createLoraModules({"attn_dense", "attn_qkv"}, 4, 4, 1, 1, 2, 2)); } std::unique_ptr mManager; BufferManager::CudaStreamPtr mStream; ModelConfig mModelConfig; WorldConfig mWorldConfig; PeftTable getPeftTable(SizeType32 tpRank = 0) { auto modelConfig = ModelConfig(0, 2, 0, 1, 16, nvinfer1::DataType::kFLOAT); modelConfig.setMlpHiddenSize(32); auto worldConfig = WorldConfig(2, 2, 3); std::vector modules{ LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0), }; modelConfig.setLoraModules(modules); auto pageConfig = LoraCachePageManagerConfig( runtime::MemoryType::kCPU, nvinfer1::DataType::kFLOAT, 2 * 8, 6, 64, 4 * 16, 1); pageConfig.setInitToZero(true); LoraCache loraCache(pageConfig, modelConfig, worldConfig, *mManager); TensorPtr loraReqWeights = utils::loadNpy(*mManager, TEST_SOURCE_LORA_TP2.string(), MemoryType::kCPU); TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP2.string(), MemoryType::kCPU); loraCache.put(1234, loraReqWeights, loraReqKeys); PeftTable peftTable{}; peftTable.try_emplace(1234, loraCache.get(1234)); return peftTable; } }; TEST_F(LoraManagerTest, moduleParsing) { auto jsonConfig = GptJsonConfig::parse(TEST_MODEL_CONFIG); auto loraModules = jsonConfig.getModelConfig().getLoraModules(); std::vector expectedModules{ LoraModule(LoraModule::ModuleType::kATTN_QKV, 2048, 6144, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_Q, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_K, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_V, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_DENSE, 2048, 2048, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kMLP_GATE, 2048, 4096, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 2048, 4096, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 4096, 2048, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 2048, 6144, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 2048, 2048, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 2048, 2048, false, true, 1, -1), }; ASSERT_EQ(expectedModules.size(), loraModules.size()); for (size_t i = 0; i < expectedModules.size(); ++i) { EXPECT_EQ(expectedModules[i].value(), loraModules[i].value()); EXPECT_EQ(expectedModules[i].name(), loraModules[i].name()); EXPECT_EQ(expectedModules[i].inDim(), loraModules[i].inDim()); EXPECT_EQ(expectedModules[i].outDim(), loraModules[i].outDim()); EXPECT_EQ(expectedModules[i].inTpSplitDim(), loraModules[i].inTpSplitDim()); EXPECT_EQ(expectedModules[i].outTpSplitDim(), loraModules[i].outTpSplitDim()); } } static void checkLoraTensors(LoraManager const& loraManager, std::vector const& targetPtrs, TensorPtr weightsPtrs, std::vector const& targetAdapterSizes, TensorPtr adapterSizes, ModelConfig const& modelConfig, WorldConfig const& worldConfig, std::vector const& modules, SizeType32 numModules, SizeType32 numLayers, SizeType32 numSeqs, bool checkPointers = true) { auto adapterSizesPtr = bufferCast(*adapterSizes); auto weightsPtrsPtr = bufferCast(*weightsPtrs); ASSERT_EQ(targetPtrs.size(), weightsPtrs->getSize()); ASSERT_EQ(targetAdapterSizes.size(), adapterSizes->getSize()); auto firstLayerId = modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism()) * worldConfig.getPipelineParallelRank(); LoraManager::TensorMap expectedTensors; for (SizeType32 m = 0; m < numModules; ++m) { TensorPtr modSlice = ITensor::slice(weightsPtrs, m, 1); TensorPtr modAdapterSlice = ITensor::slice(adapterSizes, m, 1); modSlice->squeeze(0); modAdapterSlice->squeeze(0); for (SizeType32 l = 0; l < numLayers; ++l) { TensorPtr layerSlice = ITensor::slice(modSlice, l, 1); TensorPtr layerAdapterSlice = ITensor::slice(modAdapterSlice, l, 1); layerSlice->squeeze(0); layerAdapterSlice->squeeze(0); auto weightsFieldName = std::string(modules.at(m).name()) + "_lora_weights_pointers_" + std::to_string(l + firstLayerId); expectedTensors.insert_or_assign(weightsFieldName, layerSlice); auto adapterSizeFieldName = std::string(modules.at(m).name()) + "_lora_ranks_" + std::to_string(l + firstLayerId); expectedTensors.insert_or_assign(adapterSizeFieldName, layerAdapterSlice); for (SizeType32 i = 0; i < numSeqs; ++i) { SizeType32 adapterSizeOff = common::flat_index3(m, l, i, numLayers, numSeqs); EXPECT_EQ(targetAdapterSizes[adapterSizeOff], adapterSizesPtr[adapterSizeOff]); SizeType32 inPtrIdx = common::flat_index4(m, l, i, 0, numLayers, numSeqs, 2); SizeType32 outPtrIdx = common::flat_index4(m, l, i, 1, numLayers, numSeqs, 2); std::cout << weightsPtrsPtr[inPtrIdx] << " " << weightsPtrsPtr[outPtrIdx] << std::endl; if (checkPointers || targetPtrs[inPtrIdx] == 0) { EXPECT_EQ(targetPtrs[inPtrIdx], weightsPtrsPtr[inPtrIdx]); EXPECT_EQ(targetPtrs[outPtrIdx], weightsPtrsPtr[outPtrIdx]); } else { EXPECT_NE(0, weightsPtrsPtr[inPtrIdx]); EXPECT_NE(0, weightsPtrsPtr[outPtrIdx]); } } } } LoraManager::TensorMap inputTensors; loraManager.insertInputTensors(inputTensors, weightsPtrs, adapterSizes, modelConfig, worldConfig); ASSERT_EQ(expectedTensors.size(), inputTensors.size()); for (auto& [fieldName, tensor] : expectedTensors) { ASSERT_NE(inputTensors.find(fieldName), inputTensors.end()); auto expectedTensor = expectedTensors.find(fieldName)->second; auto actualTensor = inputTensors.find(fieldName)->second; ITensor::shapeEquals(expectedTensor->getShape(), actualTensor->getShape()); if (expectedTensor->getDataType() == nvinfer1::DataType::kINT64) { auto expT = bufferCast(*expectedTensor); auto actT = bufferCast(*actualTensor); for (size_t i = 0; i < expectedTensor->getSize(); ++i) { EXPECT_EQ(expT[i], actT[i]); } } else { auto expT = bufferCast(*expectedTensor); auto actT = bufferCast(*actualTensor); for (size_t i = 0; i < expectedTensor->getSize(); ++i) { EXPECT_EQ(expT[i], actT[i]); } } } } static std::tuple, std::vector, PeftTable> createFillInputTensorsTestsData( std::vector const& configs, std::vector const& reqIds, std::vector const& reqBeamWidth, std::vector const& modules, SizeType32 numLayers, SizeType32 numSeq, std::vector& valuesWorkspace) { std::map moduleOffset; SizeType32 modOff = 0; for (auto const& m : modules) { moduleOffset[m.value()] = modOff++; } SizeType32 batchSize = configs.size(); SizeType32 numModules = modules.size(); std::vector targetAdapterSizes(numModules * numLayers * numSeq, 0); std::vector targetPointers(numModules * numLayers * numSeq * 2, 0); PeftTable peftTable{}; int64_t pointerAddr = 777001; for (int bid = 0; bid < configs.size(); ++bid) { valuesWorkspace.push_back(std::make_shared>()); auto beamWidth = reqBeamWidth[bid]; auto config = configs[bid]; if (config == nullptr) { continue; } peftTable.try_emplace(reqIds[bid], valuesWorkspace[bid]); if (config->getShape().nbDims == 3) { config->squeeze(0); } SizeType32 numRows = config->getShape().d[0]; for (SizeType32 r = 0; r < numRows; ++r) { auto const* row = bufferCast(*ITensor::slice(config, r, 1)); auto moduleId = row[lora::kLORA_CONFIG_MODULE_OFF]; auto layerId = row[lora::kLORA_CONFIG_LAYER_OFF]; auto adapterSize = row[lora::kLORA_CONFIG_ADAPTER_SIZE_OFF]; auto modOff = moduleOffset.at(moduleId); auto inPointer = pointerAddr++; auto outPointer = pointerAddr++; valuesWorkspace[bid]->push_back( LoraCache::TaskLayerModuleConfig{0, 0, 0, 0, moduleId, layerId, adapterSize, 0, inPointer, outPointer}); for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx) { targetAdapterSizes[common::flat_index3(modOff, layerId, bid + beamIdx, numLayers, numSeq)] = adapterSize; targetPointers[common::flat_index4(modOff, layerId, bid + beamIdx, 0, numLayers, numSeq, 2)] = inPointer; targetPointers[common::flat_index4(modOff, layerId, bid + beamIdx, 1, numLayers, numSeq, 2)] = outPointer; } } } return std::make_tuple(targetAdapterSizes, targetPointers, peftTable); } TEST_F(LoraManagerTest, fillInputTensors) { LoraManager loraManager; auto modelConfig = ModelConfig(0, 2, 0, 1, 16, nvinfer1::DataType::kFLOAT); modelConfig.setMlpHiddenSize(32); auto worldConfig = WorldConfig(1, 1, 0); std::vector modules{ LoraModule(LoraModule::ModuleType::kATTN_QKV, 16, 3 * 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_Q, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_K, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_V, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kATTN_DENSE, 16, 16, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kMLP_H_TO_4H, 16, 32, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kMLP_GATE, 16, 32, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kMLP_4H_TO_H, 32, 16, false, true, 1, -1), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_QKV, 16, 3 * 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_Q, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_K, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_V, 16, 16, false, true, -1, 0), LoraModule(LoraModule::ModuleType::kCROSS_ATTN_DENSE, 16, 16, false, true, 1, -1), }; modelConfig.setLoraModules(modules); loraManager.create(modelConfig); auto numModules = static_cast(modelConfig.getLoraModules().size()); auto numLayers = static_cast(modelConfig.getNbAttentionLayers()); SizeType32 numSeqs = 4; TensorPtr weightsPtrs = mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs, 2}), nvinfer1::DataType::kINT64); TensorPtr adapterSizes = mManager->cpu(ITensor::makeShape({numModules, numLayers, numSeqs}), nvinfer1::DataType::kINT32); mManager->setZero(*weightsPtrs); mManager->setZero(*adapterSizes); SizeType32 numContextRequests = 1; std::vector reqIds{1, 2, 3}; std::vector reqBeamWidth{1, 2, 1}; TensorPtr loraReqKeys = utils::loadNpy(*mManager, TEST_KEYS_LORA_TP1.string(), MemoryType::kCPU); std::vector loraConfigs{loraReqKeys, loraReqKeys, nullptr}; std::vector valuesWorkspace; auto [targetadapterSizes, targetPointers, peftTable] = createFillInputTensorsTestsData( loraConfigs, reqIds, reqBeamWidth, modules, numLayers, numSeqs, valuesWorkspace); loraManager.fillInputTensors(weightsPtrs, adapterSizes, peftTable, reqIds, reqBeamWidth, modelConfig, worldConfig); auto adapterSizesPtr = bufferCast(*adapterSizes); auto weightsPtrsPtr = bufferCast(*weightsPtrs); checkLoraTensors(loraManager, targetPointers, weightsPtrs, targetadapterSizes, adapterSizes, modelConfig, worldConfig, modules, numModules, numLayers, numSeqs); } } // namespace tensorrt_llm::runtime