# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from ...logger import logger from ...mapping import Mapping from ..convert_utils import infer_dtype from ..modeling_utils import PretrainedConfig, QuantConfig class BaichuanConfig(PretrainedConfig): def __init__(self, model_version: Optional[str] = None, **kwargs): super().__init__(**kwargs) if model_version is None: model_version = BaichuanConfig.guess_model_version(self) self.model_version = model_version def to_dict(self): output = super().to_dict() # Serialize the fields added in BaichuanConfig output['model_version'] = self.model_version return output @staticmethod def guess_model_version( config: Union['transformers.PretrainedConfig', 'BaichuanConfig']) -> str: logger.warning( "Model version is not set, trying to guess from loaded config") size = '7' if config.num_attention_heads == 32 else '13' version = '1' if config.vocab_size == 64000 else '2' return f'v{version}_{size}b' @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers trust_remote_code = kwargs.pop('trust_remote_code', True) if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = transformers.AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=trust_remote_code) model_version = kwargs.pop('model_version', None) if model_version is None: model_version = BaichuanConfig.guess_model_version(hf_config) if model_version == 'v1_7b' or model_version == 'v2_7b': position_embedding_type = 'rope_gpt_neox' max_position_embeddings = hf_config.max_position_embeddings else: position_embedding_type = 'alibi' max_position_embeddings = hf_config.model_max_length dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None)) return cls(architecture='BaichuanForCausalLM', dtype=dtype, vocab_size=hf_config.vocab_size, max_position_embeddings=max_position_embeddings, hidden_size=hf_config.hidden_size, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, num_key_value_heads=hf_config.num_attention_heads, hidden_act=hf_config.hidden_act, intermediate_size=hf_config.intermediate_size, norm_epsilon=hf_config.rms_norm_eps, position_embedding_type=position_embedding_type, model_version=model_version, mapping=mapping, quantization=quant_config, **kwargs)