# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union from transformers import AutoConfig from ...layers import MoeConfig from ...mapping import Mapping from ..modeling_utils import PretrainedConfig, QuantConfig class DeepSeekV2Config(PretrainedConfig): def __init__(self, *, rotary_base: float = 10000.0, rotary_scaling: Optional[dict] = None, moe: Optional[Union[MoeConfig, dict]] = None, **kwargs): self.rotary_base = rotary_base self.rotary_scaling = rotary_scaling if isinstance(moe, dict): moe = MoeConfig.from_dict(moe) assert isinstance(moe, MoeConfig), "moe must be a MoeConfig or a dictionary" self.moe = moe.validate() super().__init__(**kwargs) def to_dict(self): output = super().to_dict() # Serialize the fields added in DeepSeekV2Config output['rotary_base'] = self.rotary_base output['rotary_scaling'] = self.rotary_scaling output['moe'] = self.moe.to_dict() return output @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers trust_remote_code = kwargs.pop('trust_remote_code', True) if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = AutoConfig.from_pretrained( hf_config_dir, trust_remote_code=trust_remote_code) moe_routed_scaling_factor = hf_config.routed_scaling_factor moe_top_k = hf_config.num_experts_per_tok assert moe_routed_scaling_factor > 0, 'routed_scaling_factor should be greater than 0' if hf_config.topk_method == 'group_limited_greedy': if moe_top_k > 1 and hf_config.norm_topk_prob: moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM else: moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED elif hf_config.topk_method == 'greedy': assert moe_routed_scaling_factor == 1.0, 'The combination of topk_method == greedy and routed_scaling_factor != 1.0 is not supported' if moe_top_k > 1 and hf_config.norm_topk_prob: moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE else: moe_renorm_mode = MoeConfig.ExpertScaleNormalizationMode.NONE else: raise AssertionError( f'Unsupported topk_method in hf_config: {hf_config.topk_method}' ) rotary_scaling = None if hf_config.rope_scaling is not None: rotary_scaling = { 'beta_fast': hf_config.rope_scaling['beta_fast'], 'beta_slow': hf_config.rope_scaling['beta_slow'], 'factor': hf_config.rope_scaling['factor'], 'mscale': hf_config.rope_scaling['mscale'], 'mscale_all_dim': hf_config.rope_scaling['mscale_all_dim'], 'original_max_position_embeddings': hf_config.rope_scaling['original_max_position_embeddings'], 'type': hf_config.rope_scaling['type'] } moe_config = MoeConfig( num_experts=hf_config.n_routed_experts, shared_expert_intermediate_size=hf_config.n_shared_experts * hf_config.moe_intermediate_size, top_k=hf_config.num_experts_per_tok, normalization_mode=moe_renorm_mode, device_limited_n_group=hf_config.n_group, device_limited_topk_group=hf_config.topk_group, device_limited_routed_scaling_factor=hf_config.routed_scaling_factor ) moe_config.validate() return cls(architecture=hf_config.architectures[0], dtype=dtype, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, hidden_size=hf_config.hidden_size, intermediate_size=hf_config.intermediate_size, num_key_value_heads=hf_config.num_key_value_heads, vocab_size=hf_config.vocab_size, position_embedding_type='rope_gpt_neox', max_position_embeddings=hf_config.max_position_embeddings, hidden_act='swiglu', norm_epsilon=hf_config.rms_norm_eps, rotary_base=hf_config.rope_theta, rotary_scaling=rotary_scaling, moe_inter_size=hf_config.moe_intermediate_size, moe=moe_config, mapping=mapping, quantization=quant_config, kv_lora_rank=hf_config.kv_lora_rank, q_lora_rank=hf_config.q_lora_rank, qk_nope_head_dim=hf_config.qk_nope_head_dim, qk_rope_head_dim=hf_config.qk_rope_head_dim, v_head_dim=hf_config.v_head_dim, topk_method=hf_config.topk_method, first_k_dense_replace=hf_config.first_k_dense_replace, moe_layer_freq=hf_config.moe_layer_freq, scoring_func=hf_config.scoring_func, **kwargs)