# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ....functional import allreduce, pow, select, stack from ....layers import GroupNorm from ....mapping import Mapping from ....module import Module class DistriGroupNorm(Module): def __init__(self, module: GroupNorm, mapping: Mapping = Mapping(), is_first_layer: bool = False): super().__init__() self.mapping = mapping self.module = module def forward(self, x, *args, **kwargs): mapping = self.mapping module = self.module n, c, h, w = x.shape num_groups = module.num_groups group_size = c // num_groups x = x.view([n, num_groups, group_size, h, w]) x_mean = x.mean(dim=4, keepdim=True).mean(dim=(3, 2), keepdim=True) x2_mean = pow(x, 2.0).mean(dim=4, keepdim=True).mean(dim=(3, 2), keepdim=True) mean = stack([x_mean, x2_mean], dim=0) mean = allreduce(mean, mapping.tp_group) mean = mean / (mapping.tp_size * 1.0) x_mean = select(mean, 0, 0) x2_mean = select(mean, 0, 1) var = x2_mean - pow(x_mean, 2.0) num_elements = group_size * h * w var = var * (num_elements / (num_elements - 1)) std = (var + module.eps).sqrt() output = (x - x_mean) / std output = output.view([n, c, h, w]) if module.affine: output = output * module.weight.value.view([1, -1, 1, 1]) output = output + module.bias.value.view([1, -1, 1, 1]) return output