# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from defs.common import (convert_weights, get_dummy_spec_decoding_heads, venv_check_call) from defs.conftest import get_sm_version, skip_fp8_pre_ada, skip_post_blackwell from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @skip_post_blackwell @pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8']) @pytest.mark.parametrize("data_type", ['bfloat16']) @pytest.mark.parametrize("num_medusa_heads", [4], ids=['4-heads']) @pytest.mark.parametrize("medusa_model_roots", ["medusa-vicuna-7b-v1.3"], indirect=True) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_llm_medusa_1gpu(batch_size, data_type, medusa_model_roots, medusa_example_root, llm_datasets_root, llm_rouge_root, num_medusa_heads, llm_venv, cmodel_dir, engine_dir, use_py_session): print("Build engines...") model_name = "medusa" model_dir = convert_weights(llm_venv=llm_venv, example_root=medusa_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=medusa_model_roots, data_type=data_type) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", f"--max_beam_width=1", "--remove_input_padding=enable", "--context_fmha=enable", "--max_input_len=1024", "--max_seq_len=1536", f"--max_batch_size={batch_size}", "--paged_kv_cache=enable", '--speculative_decoding_mode=medusa', ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run summarize...") summary_cmd = [ f"{medusa_example_root}/../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir", f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=24", "--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]", f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if use_py_session: summary_cmd.append("--use_py_session") venv_check_call(llm_venv, summary_cmd) @skip_post_blackwell @pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8']) @pytest.mark.parametrize("data_type", ['bfloat16', 'float16']) @pytest.mark.parametrize("num_medusa_heads", [4], ids=['4-heads']) @pytest.mark.parametrize("medusa_model_roots", ["medusa-vicuna-7b-v1.3"], indirect=True) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) @pytest.mark.parametrize("base_model_datatype", ['fp8']) def test_llm_medusa_with_qaunt_base_model_1gpu( batch_size, data_type, medusa_model_roots, medusa_example_root, base_model_datatype, llm_datasets_root, llm_rouge_root, num_medusa_heads, llm_venv, cmodel_dir, engine_dir, use_py_session): model_name = f"vicuna_meudsa_quant_base_mode_{base_model_datatype}" quant_model_ckpt_output_path = os.path.join(cmodel_dir, model_name) print("Quant base model to FP8 and combine medusa head") quant_cmd = [ f"{medusa_example_root}/../quantization/quantize.py", f"--model_dir={medusa_model_roots[0]}", f"--dtype={data_type}", f"--qformat={base_model_datatype}", f"--kv_cache_dtype={base_model_datatype}", f"--output_dir={quant_model_ckpt_output_path}", "--calib_size=512", f"--medusa_model_dir={medusa_model_roots[1]}", f"--num_medusa_heads={num_medusa_heads}" ] # https://nvbugs/4658787 # WAR before medusa tests can work offline env = {"HF_DATASETS_OFFLINE": "0"} venv_check_call(llm_venv, quant_cmd, env=env) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={quant_model_ckpt_output_path}", f"--output_dir={engine_dir}", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", f"--max_beam_width=1", "--remove_input_padding=enable", "--context_fmha=enable", "--max_input_len=1024", "--max_seq_len=1536", f"--max_batch_size={batch_size}", "--paged_kv_cache=enable", '--speculative_decoding_mode=medusa', ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run summarize...") summary_cmd = [ f"{medusa_example_root}/../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir", f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=24", "--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]", f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if use_py_session: summary_cmd.append("--use_py_session") venv_check_call(llm_venv, summary_cmd) @pytest.mark.parametrize("batch_size", [1, 8], ids=['bs1', 'bs8']) @pytest.mark.parametrize("medusa_model_roots", ["llama3.1-medusa-8b-hf_v0.1"], indirect=True) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_llm_medusa_fp8_modelOpt_ckpt_1gpu(batch_size, medusa_model_roots, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, use_py_session): skip_fp8_pre_ada(use_fp8=True) model_ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=medusa_example_root, cmodel_dir=cmodel_dir, model="llama", model_path=medusa_model_roots[0]) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_ckpt_dir}", f"--output_dir={engine_dir}", "--gemm_plugin=float16", '--speculative_decoding_mode=medusa', f"--max_batch_size={batch_size}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run summarize...") summary_cmd = [ f"{medusa_example_root}/../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{medusa_model_roots[0]}", "--tokenizer_dir", f"{medusa_model_roots[0]}", f"--engine_dir={engine_dir}", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=24", "--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [1, 6], [0, 7, 0]]", f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if use_py_session: summary_cmd.append("--use_py_session") venv_check_call(llm_venv, summary_cmd) def test_with_dummy_medusa(hf_model_root, medusa_example_root, llm_venv, cmodel_dir, engine_dir, batch_size, data_type, num_medusa_heads, use_py_session, model_type): # We unset WORLD_SIZE while running tests in specific cluster nodes to # deal with a bug in transformers library. Trainer initialization in # get_dummy_spec_decoding_heads() function fails if WORLD_SIZE is unset. # Preemptively skip tests if WORLD_SIZE is unset. if os.environ.get("WORLD_SIZE") is None: pytest.skip( "[test_with_dummy_medusa] Skipping test due to missing WORLD_SIZE env variable." ) print("Creating dummy Medusa heads...") get_dummy_spec_decoding_heads(hf_model_dir=hf_model_root, save_dir=llm_venv.get_working_directory(), mode='medusa', num_heads=num_medusa_heads) print("Converting to TRTLLM checkpoints...") model_name = model_type + "_medusa" converted_model_path = os.path.join(cmodel_dir, model_name) converted_ckpt_dir = f'{converted_model_path}/{data_type}/1-gpu' convert_cmd = [ f"{medusa_example_root}/convert_checkpoint.py", "--model_dir", os.path.join(llm_venv.get_working_directory(), 'fp8'), "--output_dir", converted_ckpt_dir, f"--dtype={data_type}", "--tp_size=1", "--pp_size=1", f"--model_type={model_type}" ] venv_check_call(llm_venv, convert_cmd) print("Building engine...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={converted_ckpt_dir}", f"--output_dir={engine_dir}", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", f"--max_beam_width=1", "--remove_input_padding=enable", "--context_fmha=enable", "--max_input_len=1024", "--max_seq_len=1536", f"--max_batch_size={batch_size}", "--paged_kv_cache=enable", '--speculative_decoding_mode=medusa', ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run run.py...") run_cmd = [ f"{medusa_example_root}/../run.py", f"--tokenizer_dir={hf_model_root}", f"--engine_dir={engine_dir}", "--max_output_len=100", "--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]", f"--temperature=1.0", ] if use_py_session: run_cmd.append("--use_py_session") venv_check_call(llm_venv, run_cmd) @pytest.mark.skip(reason="https://nvbugs/5219534") @pytest.mark.parametrize("llama_model_root", ['llama-v2-7b-hf', 'llama-3.1-8b', 'llama-3.2-1b'], indirect=True) def test_llama_medusa_1gpu(llama_model_root, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, batch_size=1, data_type='bfloat16', num_medusa_heads=4, use_py_session=True): test_with_dummy_medusa(hf_model_root=llama_model_root, medusa_example_root=medusa_example_root, llm_venv=llm_venv, cmodel_dir=cmodel_dir, engine_dir=engine_dir, batch_size=batch_size, data_type=data_type, num_medusa_heads=num_medusa_heads, use_py_session=use_py_session, model_type='llama') @pytest.mark.skip(reason="https://nvbugs/5219534") @pytest.mark.parametrize("code_llama_model_root", ['CodeLlama-7b-Instruct'], indirect=True) def test_codellama_medusa_1gpu(code_llama_model_root, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, batch_size=1, data_type='bfloat16', num_medusa_heads=4, use_py_session=True): test_with_dummy_medusa(hf_model_root=code_llama_model_root, medusa_example_root=medusa_example_root, llm_venv=llm_venv, cmodel_dir=cmodel_dir, engine_dir=engine_dir, batch_size=batch_size, data_type=data_type, num_medusa_heads=num_medusa_heads, use_py_session=use_py_session, model_type='llama') @pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'], indirect=True) def test_mistral_medusa_1gpu(llm_mistral_model_root, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, batch_size=1, data_type='bfloat16', num_medusa_heads=4, use_py_session=True): test_with_dummy_medusa(hf_model_root=llm_mistral_model_root, medusa_example_root=medusa_example_root, llm_venv=llm_venv, cmodel_dir=cmodel_dir, engine_dir=engine_dir, batch_size=batch_size, data_type=data_type, num_medusa_heads=num_medusa_heads, use_py_session=use_py_session, model_type='mistral') @pytest.mark.parametrize("llm_qwen_model_root", [ "qwen_7b_chat", "qwen1.5_7b_chat", "qwen2_7b_instruct", "qwen2_0.5b_instruct", "qwen2.5_1.5b_instruct" ], indirect=True) def test_qwen_medusa_1gpu(llm_qwen_model_root, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, batch_size=1, data_type='bfloat16', num_medusa_heads=4, use_py_session=True): test_with_dummy_medusa(hf_model_root=llm_qwen_model_root, medusa_example_root=medusa_example_root, llm_venv=llm_venv, cmodel_dir=cmodel_dir, engine_dir=engine_dir, batch_size=batch_size, data_type=data_type, num_medusa_heads=num_medusa_heads, use_py_session=use_py_session, model_type='qwen') @pytest.mark.parametrize("llm_phi_model_root", [ "phi-2", "Phi-3-mini-128k-instruct", "Phi-3-small-128k-instruct", "Phi-3.5-mini-instruct", "Phi-4-mini-instruct" ], indirect=True) def test_phi_medusa_1gpu(llm_phi_model_root, medusa_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, batch_size=1, data_type='bfloat16', num_medusa_heads=4, use_py_session=True): test_with_dummy_medusa(hf_model_root=llm_phi_model_root, medusa_example_root=medusa_example_root, llm_venv=llm_venv, cmodel_dir=cmodel_dir, engine_dir=engine_dir, batch_size=batch_size, data_type=data_type, num_medusa_heads=num_medusa_heads, use_py_session=use_py_session, model_type='phi')