import os import sys cur_dir = os.path.dirname(os.path.abspath(__file__)) from tensorrt_llm import LLM from tensorrt_llm.llmapi import SamplingParams from tensorrt_llm.llmapi.utils import print_colored # isort: off sys.path.append(os.path.join(cur_dir, '..')) from utils.llm_data import llm_models_root # isort: on model_path = llm_models_root() / "llama-models-v2" / "TinyLlama-1.1B-Chat-v1.0" def run_llm_tp2(): with LLM(model=model_path, tensor_parallel_size=2) as llm: sampling_params = SamplingParams(max_tokens=10, end_id=-1) for output in llm.generate(["Hello, my name is"], sampling_params): print(output) def run_multi_llm_tasks(): for i in range(3): print_colored(f"Running LLM task {i}\n", "green") run_llm_tp2() print_colored(f"LLM task {i} completed\n", "green") if __name__ == "__main__": run_multi_llm_tasks()