/* * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "userbuffersTensor.h" namespace torch_ext { std::pair create_userbuffers_tensor( at::IntArrayRef shape, torch::ScalarType dtype) { int64_t buffer_size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()) * torch::elementSize(dtype); std::vector strides_vec(shape.size()); strides_vec[shape.size() - 1] = 1; for (int64_t i = static_cast(shape.size()) - 1; i >= 1; --i) { strides_vec[i - 1] = strides_vec[i] * shape[i]; } auto [ptr, ub] = tensorrt_llm::runtime::ub::UserBuffersManager::get_instance().allocate_userbuffers(buffer_size); auto& deleter = ptr.get_deleter(); return std::make_pair( torch::from_blob(ptr.release(), shape, strides_vec, deleter, torch::dtype(dtype).device(torch::kCUDA)), ub); } // Custom op interface for create_userbuffers_tensor. // Python side does not need the UBBuffer object. torch::Tensor create_userbuffers_tensor_op(at::IntArrayRef shape, torch::ScalarType dtype) { return create_userbuffers_tensor(shape, dtype).first; } } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def("create_userbuffers_tensor", &torch_ext::create_userbuffers_tensor_op); }