/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/tensorMapUtils.h" #include "tensorrt_llm/common/config.h" #include "tensorrt_llm/kernels/kvCacheUtils.h" #include #include TRTLLM_NAMESPACE_BEGIN namespace kernels { namespace { using tensorrt_llm::common::CUDADriverWrapper; uint32_t getElemBytes(CUtensorMapDataType_enum dataType) { switch (dataType) { case CU_TENSOR_MAP_DATA_TYPE_UINT8: return 1; case CU_TENSOR_MAP_DATA_TYPE_UINT16: return 2; case CU_TENSOR_MAP_DATA_TYPE_UINT32: return 4; case CU_TENSOR_MAP_DATA_TYPE_INT32: return 4; case CU_TENSOR_MAP_DATA_TYPE_UINT64: return 8; case CU_TENSOR_MAP_DATA_TYPE_INT64: return 8; case CU_TENSOR_MAP_DATA_TYPE_FLOAT16: return 2; case CU_TENSOR_MAP_DATA_TYPE_FLOAT32: return 4; case CU_TENSOR_MAP_DATA_TYPE_FLOAT64: return 8; case CU_TENSOR_MAP_DATA_TYPE_BFLOAT16: return 2; case CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ: return 4; case CU_TENSOR_MAP_DATA_TYPE_TFLOAT32: return 4; case CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ: return 4; case CU_TENSOR_MAP_DATA_TYPE_16U4_ALIGN8B: return 8; case CU_TENSOR_MAP_DATA_TYPE_16U4_ALIGN16B: return 16; case CU_TENSOR_MAP_DATA_TYPE_16U6_ALIGN16B: return 16; } throw std::runtime_error("unsupported data type"); } CUtensorMapSwizzle getSwizzleMode(uint32_t partBytes) { switch (partBytes) { case 128: return CU_TENSOR_MAP_SWIZZLE_128B; case 64: return CU_TENSOR_MAP_SWIZZLE_64B; default: TLLM_THROW("unsupported cache head size"); } }; CUtensorMapDataType_enum getDataTypeFromXqaParams(XQAParams const& xqaParams) { if (xqaParams.kv_cache_data_type == DATA_TYPE_BF16) { return CU_TENSOR_MAP_DATA_TYPE_BFLOAT16; } else if (xqaParams.kv_cache_data_type == DATA_TYPE_FP16) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT16; } TLLM_CHECK(xqaParams.kv_cache_data_type == DATA_TYPE_E4M3 || xqaParams.kv_cache_data_type == DATA_TYPE_E5M2 || xqaParams.kv_cache_data_type == DATA_TYPE_INT8); return CU_TENSOR_MAP_DATA_TYPE_UINT8; } CUtensorMap makeTensorMapForQ(std::shared_ptr const& driver, void const* addr, CUtensorMapDataType_enum dataType, uint32_t headElems, uint32_t totalNbHeads, uint32_t partElems, uint32_t boxHeads) { CUtensorMap tensorMap{}; uint64_t const globalDims[] = {headElems, totalNbHeads}; uint32_t elemBytes = getElemBytes(dataType); uint32_t const headBytes = elemBytes * headElems; uint64_t const globalStrides[] = {headBytes}; uint32_t const boxDims[] = {partElems, boxHeads}; uint32_t const elemStrides[] = {1, 1}; auto const swizzle = getSwizzleMode(elemBytes * partElems); TLLM_CU_CHECK(driver->cuTensorMapEncodeTiled(&tensorMap, dataType, 2, const_cast(addr), globalDims, globalStrides, boxDims, elemStrides, CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle, CU_TENSOR_MAP_L2_PROMOTION_NONE, CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE)); return tensorMap; } CUtensorMap makeTensorMapForPagedKVCache(std::shared_ptr const& driver, void const* addr, CUtensorMapDataType_enum dataType, uint32_t headElems, uint32_t nbKHeads, uint32_t tokensPerPage, uint32_t partElems, uint32_t nbTokensPerTile = 64) { CUtensorMap tensorMap{}; uint32_t elemBytes = getElemBytes(dataType); uint64_t const globalDims[] = {headElems, tokensPerPage, nbKHeads, 1U << 31}; uint32_t const headBytes = elemBytes * headElems; uint64_t const globalStrides[] = {headBytes, headBytes * tokensPerPage, headBytes * tokensPerPage * nbKHeads}; uint32_t const boxDims[] = {partElems, std::min(tokensPerPage, nbTokensPerTile), 1, 1}; uint32_t const elemStrides[] = {1, 1, 1, 1}; auto const swizzle = getSwizzleMode(elemBytes * partElems); TLLM_CU_CHECK(driver->cuTensorMapEncodeTiled(&tensorMap, dataType, 4, const_cast(addr), globalDims, globalStrides, boxDims, elemStrides, CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle, CU_TENSOR_MAP_L2_PROMOTION_NONE, CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE)); return tensorMap; } CUtensorMap makeTensorMapForContiguousKVCache(std::shared_ptr const& driver, void const* addr, CUtensorMapDataType_enum dataType, uint32_t headElems, uint32_t nbKHeads, uint32_t maxCacheLen, uint32_t beamWidth, uint32_t batchSize, uint32_t partElems, uint32_t nbTokensPerTile = 64) { CUtensorMap tensorMap{}; uint64_t const globalDims[] = {headElems, maxCacheLen, nbKHeads, 2 * beamWidth * batchSize}; uint32_t elemBytes = getElemBytes(dataType); uint32_t const headBytes = elemBytes * headElems; uint64_t const globalStrides[] = {headBytes, headBytes * maxCacheLen, headBytes * maxCacheLen * nbKHeads}; uint32_t const boxDims[] = {partElems, nbTokensPerTile, 1, 1}; uint32_t const elemStrides[] = {1, 1, 1, 1}; auto const swizzle = getSwizzleMode(elemBytes * partElems); TLLM_CU_CHECK(driver->cuTensorMapEncodeTiled(&tensorMap, dataType, 4, const_cast(addr), globalDims, globalStrides, boxDims, elemStrides, CU_TENSOR_MAP_INTERLEAVE_NONE, swizzle, CU_TENSOR_MAP_L2_PROMOTION_NONE, CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE)); return tensorMap; } } // namespace template CUtensorMap makeTensorMapForHopperXqaKVCache( std::shared_ptr const& driver, XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer) { if constexpr (std::is_same_v) { uint32_t const headElems = xqaParams.head_size; CUtensorMapDataType_enum const dataType = getDataTypeFromXqaParams(xqaParams); uint32_t const elemBytes = getElemBytes(dataType); TLLM_CHECK(headElems <= 256); uint32_t const paddedHeadElems = headElems <= 64 ? 64 : (headElems <= 128 ? 128 : 256); uint32_t const partElems = std::min(elemBytes * paddedHeadElems, 128U) / elemBytes; return makeTensorMapForPagedKVCache(driver, kv_cache_buffer.mPrimaryPoolPtr, dataType, xqaParams.head_size, xqaParams.num_kv_heads, xqaParams.tokens_per_block, partElems); } else { static_assert(std::is_same_v); uint32_t const headElems = xqaParams.head_size; CUtensorMapDataType_enum const dataType = getDataTypeFromXqaParams(xqaParams); uint32_t const elemBytes = getElemBytes(dataType); TLLM_CHECK(headElems <= 256); uint32_t const paddedHeadElems = headElems <= 64 ? 64 : (headElems <= 128 ? 128 : 256); uint32_t const partElems = std::min(elemBytes * paddedHeadElems, 128U) / elemBytes; return makeTensorMapForContiguousKVCache(driver, kv_cache_buffer.data, dataType, xqaParams.head_size, xqaParams.num_kv_heads, xqaParams.max_attention_window_size, xqaParams.beam_width, xqaParams.batch_size, partElems); } } template CUtensorMap makeTensorMapForHopperXqaKVCache( std::shared_ptr const&, XQAParams const&, KVBlockArray const&); template CUtensorMap makeTensorMapForHopperXqaKVCache( std::shared_ptr const&, XQAParams const&, KVLinearBuffer const&); template CUtensorMap makeTensorMapForXqaMlaKVCache(std::shared_ptr const& driver, XQAParams const& xqaParams, KVCacheBuffer const& kv_cache_buffer, bool forK) { CUtensorMapDataType_enum const dataType = getDataTypeFromXqaParams(xqaParams); uint32_t const partElems = (forK ? 64 : 128); if constexpr (std::is_same_v) { return makeTensorMapForPagedKVCache(driver, kv_cache_buffer.mPrimaryPoolPtr, dataType, xqaParams.head_size, xqaParams.num_kv_heads, xqaParams.tokens_per_block, partElems); } else { // The current implementation will waste memory. Don't use this for now. TLLM_THROW("unsupported kv cache buffer type"); } } template CUtensorMap makeTensorMapForXqaMlaKVCache( std::shared_ptr const&, XQAParams const&, KVBlockArray const&, bool); template CUtensorMap makeTensorMapForXqaMlaKVCache( std::shared_ptr const&, XQAParams const&, KVLinearBuffer const&, bool); CUtensorMap makeTensorMapForXqaMlaQ( std::shared_ptr const& driver, XQAParams const& xqaParams, void const* q) { uint32_t const partElems = 64; return makeTensorMapForQ(driver, q, getDataTypeFromXqaParams(xqaParams), xqaParams.head_size, xqaParams.num_q_heads * xqaParams.total_num_input_tokens, partElems, xqaParams.num_q_heads); } } // namespace kernels TRTLLM_NAMESPACE_END