# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product import numpy as np import pytest import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Parameter, Tensor from tensorrt_llm._utils import torch_to_numpy sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import getSMVersion class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') torch.manual_seed(42) @parameterized.expand( list(product([True, False], ['float16', 'float32', 'bfloat16']))) def test_layer_norm_plugin(self, remove_batch_dim, dtype): # Skip tests that are not supported in pre-ampere architecture if getSMVersion() < 80: if dtype == 'bfloat16': pytest.skip( "bfloat16 is not supported in pre-ampere architecture") # test data hidden_size = 1024 x_data = torch.randn((8, 128, hidden_size) if not remove_batch_dim else (8 * 128, hidden_size), dtype=torch.float64, device="cuda") weight = torch.randn((hidden_size), dtype=torch.float64, device="cuda") bias = torch.randn((hidden_size), dtype=torch.float64, device="cuda") eps = 1e-5 m = torch.nn.LayerNorm(hidden_size, eps=eps, dtype=torch.float64, device="cuda") m.weight = torch.nn.Parameter(weight) m.bias = torch.nn.Parameter(bias) # pytorch run with torch.no_grad(): ref = m(x_data) m.to(tensorrt_llm._utils.str_dtype_to_torch(dtype)) x_data = x_data.to(tensorrt_llm._utils.str_dtype_to_torch(dtype)) gamma_data = m.weight.detach().cpu() beta_data = m.bias.detach().cpu() # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() net.plugin_config.set_layernorm_plugin(dtype) with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) weight = Parameter(torch_to_numpy(gamma_data.cpu())).value bias = Parameter(torch_to_numpy(beta_data.cpu())).value output = tensorrt_llm.functional.layer_norm(x, hidden_size, weight, bias, eps).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'), bf16=(dtype == 'bfloat16'))) assert build_engine is not None, "Build engine failed" with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.cpu()}) # compare diff dtype_atol = {"float16": 2e-2, "float32": 2e-6, "bfloat16": 8e-2} np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'].to(torch.float32), atol=dtype_atol[dtype])