/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/quantization.h" #include #include namespace tensorrt_llm { enum class FP4QuantizationSFLayout { // Block scale factors are stored in swizzled layout for cutlass FP4 kernel. Scale factor // blocks are organized in 512-byte blocks in global memory, with each block having 128x4 FP8 values. // The SF matrix dimensions are therefore padded - rows to the nearest multiple of 128 and columns to // the nearest multiple of 4. // // The scale factor block rows map to data block rows in an interleaved pattern: // For a scale factor row 'i', it maps to data block row: (i % 4) * 32 + (i / 4) // Column 'j' in the scale factor block corresponds to scaling the j-th block in the data tensor. // // Please refer to https://nvbugs/4165523 for more details about the swizzled layout. SWIZZLED, // Block scale factors are stored in linear layout (row-major). This is used in some trtllm-gen kernels standard. LINEAR }; #define PadUpFn(X, Y) ((X + Y - 1) / (Y) * (Y)) // totalCloumn should be in SFMatrix, not activation Matrix, so no sfVecSize needed. inline int computeFP4SwizzledLayoutSFSize(int totalRow, int totalColumn) { int paddedRow = PadUpFn(totalRow, 128); int paddedColumn = PadUpFn(totalColumn, 4); return paddedRow * paddedColumn; } inline int computeFP4LinearLayoutSFSize(int totalRow, int totalColumn) { return totalRow * totalColumn; } namespace kernels { template void invokeQuantization( int8_t* dst, T const* src, int64_t const size, float const* scalePtr, cudaStream_t stream = 0, int maxGirdSize = 0); template void invokePerTokenQuantization(QuantT* dst, T const* src, int64_t const numRows, int64_t const numCols, float const* clampPtr, float* scalePtr, float* sumPtr, tensorrt_llm::common::QuantMode quantMode, cudaStream_t stream = 0); template void invokeFP4Quantization(int m, int n, T const* input, float const* globalScale, int64_t* output, int32_t* SFOuput, bool useUE8M0, FP4QuantizationSFLayout layout, int multiProcessorCount, cudaStream_t stream = 0); template void invokeBatchedFP4Quantization(int b, int m, int n, T const* input, float const* globalScale, int64_t* output, int32_t* SFOuput, bool useUE8M0, int multiProcessorCount, cudaStream_t stream = 0); void invokeNVFP4BlockScaleInterleave( int b, int m, int n, uint8_t const* SFIn, uint8_t* SFOutput, int multiProcessorCount, cudaStream_t stream = 0); } // namespace kernels } // namespace tensorrt_llm