/* * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/batch_manager/common.h" #include "tensorrt_llm/runtime/iTensor.h" namespace tensorrt_llm::runtime { class TllmRuntime; } // namespace tensorrt_llm::runtime namespace tensorrt_llm::batch_manager { namespace rnn_state_manager { class RnnStateManager; } class RnnStateBuffers { public: using SizeType32 = tensorrt_llm::runtime::SizeType32; using TensorPtr = runtime::ITensor::SharedPtr; using TensorMap = runtime::StringPtrMap; // others should be in rnnStateManager, we only need slotMapping here. TensorPtr slotMappingHost; // [batch_size] TensorPtr slotMappingDevice; // [batch_size] RnnStateBuffers(SizeType32 maxBatchSize, runtime::TllmRuntime const& runtime); void reshape(SizeType32 numSequences); void fillSlotMappings(RequestVector const& contextRequests, rnn_state_manager::RnnStateManager* rnnStateManager); void copySlotMappingH2D(runtime::TllmRuntime const& runtime); void getBuffers(TensorMap& inputBuffers) const; }; } // namespace tensorrt_llm::batch_manager