/* * Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/cudaDriverWrapper.h" #include "trtllmGenSrc/DevKernel.h" #include "trtllmGenSrc/Dtype.h" #include "trtllmGenSrc/RoutingKernel.h" #include "trtllmGenSrc/SfLayoutDecl.h" #include namespace tensorrt_llm { namespace kernels { namespace trtllmGenFp8BlockScaleMoe { namespace Routing { inline int32_t getMaxPermutedPaddedCount( const int32_t numTokens, const int32_t expertsPerToken, const int32_t numExperts, const int32_t padding) { const int32_t expandedRowCount = numTokens * expertsPerToken; const int32_t maxPaddingRequired = (padding - 1) * numExperts; return expandedRowCount + maxPaddingRequired; } class Runner { public: explicit Runner(); void run(void* routingLogits, void* routingBias, int32_t num_tokens, int32_t num_experts, int32_t top_k, int32_t n_groups, int32_t topk_groups, int32_t local_expert_offset, int32_t local_num_experts, float routed_scaling_factor, int32_t* routingExpertIndexes, int32_t* expertCountHistogram, int32_t* permuted_idx_size, int32_t* expanded_idx_to_permuted_idx, int32_t* permuted_idx_to_expanded_idx, int32_t* permuted_idx_to_token_idx, void* expert_weights, int32_t* num_tokens_per_expert, int32_t* cta_idx_xy_to_batch_idx, int32_t* cta_idx_xy_to_mn_limit, int32_t* num_non_exiting_ctas, trtllm::gen::Dtype dtypeElt, bool use_routing_scales_on_input, bool use_deep_seek_fp8, cudaStream_t stream); }; } // namespace Routing namespace PermuteGemm1 { class Runner { public: explicit Runner(trtllm::gen::Dtype dtypeElt); void run(void* hidden_state, void* hidden_state_scale, void* weight, void* weight_scale, void* expert_weights, float* output_scales_scalar, float* output_scales_gate_scalar, void* output, void* output_scale, int32_t top_k, int32_t hidden_size, int32_t intermediate_size, int32_t num_experts, int32_t num_tokens, int32_t* permuted_idx_to_token_idx, int32_t* ptr_num_non_exiting_ctas, int32_t* ptr_total_num_padded_tokens, int32_t* ptr_cta_idx_xy_to_batch_idx, int32_t* ptr_cta_idx_xy_to_mn_limit, bool use_routing_scales_on_input, bool use_deep_seek_fp8, cudaStream_t stream); private: trtllm::gen::Dtype mDtypeElt; }; } // namespace PermuteGemm1 namespace Gemm2 { class Runner { public: explicit Runner(trtllm::gen::Dtype dtypeElt, trtllm::gen::Dtype outputDtype = trtllm::gen::Dtype::E4m3); void run(void* permuted_hidden_state, void* permuted_hidden_state_scale, void* weight, void* weight_scale, float* output_scales_scalar, void* output, void* output_scale, int32_t top_k, int32_t hidden_size, int32_t intermediate_size, int32_t num_experts, int32_t num_tokens, int32_t* ptr_num_non_exiting_ctas, int32_t* ptr_total_num_padded_tokens, int32_t* ptr_cta_idx_xy_to_batch_idx, int32_t* ptr_cta_idx_xy_to_mn_limit, bool use_deep_seek_fp8, cudaStream_t stream); private: trtllm::gen::Dtype mDtypeElt; trtllm::gen::Dtype mOutputDtype; }; } // namespace Gemm2 namespace MoE { namespace tg = trtllm::gen; struct MoERunnerArgs { void* routing_logits = nullptr; // [num_tokens, num_experts] in float, generated after gemm(hidden_state, routing_weights) void* routing_bias = nullptr; // [num_experts] in bfloat16 for now = mDtypeExpW void* hidden_states = nullptr; // [num_tokens, hidden_size] in fp8 = mDtypeElt // [hidden_size/128, num_tokens] in float for e4m3 DS recipe // and [num_tokens, hidden_size/16] in float for e2m1 void* hidden_states_scale = nullptr; // Gemm input: void* gemm1_weights = nullptr; void* gemm1_weights_scale = nullptr; void* gemm2_weights = nullptr; void* gemm2_weights_scale = nullptr; int32_t num_tokens{0}; int32_t num_experts{0}; int32_t hidden_size{0}; // TODO: only compiled routing kernel supports top_k = 8 int32_t top_k{0}; int32_t n_group{0}; // TODO: only compiled routing kernel supports topk_group = 4 int32_t topk_group{0}; float routed_scaling_factor{0.0f}; int32_t intermediate_size{0}; int32_t local_expert_offset{0}; int32_t local_num_experts{0}; // TODO: support other types tg::Dtype mDtypeElt{tg::Dtype::Void}; tg::Dtype mDtypeExpW{tg::Dtype::Bfloat16}; tg::Dtype mDtypeOut{tg::Dtype::Bfloat16}; // Apply routing scale factors to input activations bool mUseRoutingScalesOnInput{false}; bool mUseDeepSeekFp8{false}; float* output1_scales_scalar = nullptr; float* output1_scales_gate_scalar = nullptr; float* output2_scales_scalar = nullptr; // Output: void* output = nullptr; float* output_scale = nullptr; }; struct MoEWorkspace { // Routing intermediate outputs: int32_t* routing_expert_indexes = nullptr; int32_t* permuted_idx_size = nullptr; int32_t* total_num_padded_tokens = nullptr; // TODO: duplicate of permuted_idx_size int32_t total_max_padded_tokens{0}; int32_t* expanded_idx_to_permuted_idx = nullptr; int32_t* permuted_idx_to_expanded_idx = nullptr; int32_t* permuted_idx_to_token_idx = nullptr; void* expert_weights = nullptr; // [num_tokens, top_k] in bfloat16 = mDtypeExpW int32_t* cta_idx_xy_to_batch_idx = nullptr; int32_t* cta_idx_xy_to_mn_limit = nullptr; int32_t* num_non_exiting_ctas = nullptr; void* hidden_states_scale_linear = nullptr; // Permute intermediate outputs: void* permuted_hidden_states = nullptr; float* permuted_hidden_states_scale = nullptr; // Gemm1 intermediate outputs: int32_t ProjUpTileN{0}; void* gemm1_output = nullptr; float* gemm1_output_scale = nullptr; // Activation intermediate outputs: void* activation_output = nullptr; float* activation_output_scale = nullptr; // Gemm2 intermediate outputs: void* gemm2_output = nullptr; float* gemm2_output_scale = nullptr; // Finalize intermediate outputs (placeholder not used) void* finalize_output = nullptr; float* finalize_output_scale = nullptr; }; class Runner { public: explicit Runner(); void run(MoERunnerArgs const& args, MoEWorkspace const& workspace, cudaStream_t stream); private: void setOpsData(MoERunnerArgs const& args, MoEWorkspace const& workspace, moe::dev::convertsf::Data& convertSfData, moe::dev::activation::Data& activationData, moe::dev::finalize::Data& finalizeData); }; } // namespace MoE } // namespace trtllmGenFp8BlockScaleMoe } // namespace kernels } // namespace tensorrt_llm