/* * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/config.h" #include #include #include #include #include TRTLLM_NAMESPACE_BEGIN namespace torch_ext { namespace cublas_lut { struct HashTuple { size_t operator()(std::tuple const& x) const { return std::get<0>(x) ^ std::get<1>(x) ^ std::get<2>(x); } }; // {mp2, k, n}: {algo, m_tile, m_stages, m_numsK, m_reduction, m_swizzle, m_custom, m_cga} using AlgoListType = std::unordered_map, std::array, HashTuple>; inline const AlgoListType spark_bf16_algo_list = { // llama 8b instruct fp16 decode // [-algo67 -m_tile6 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom130 -m_mma0 -m_cga2 -m_scheduling1] {{8, 4096, 4096}, {67, 6, 35, 1, 0, 0, 130, 2}}, // [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1] {{8, 4096, 6144}, {67, 393, 35, 1, 0, 0, 142, 2}}, // [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1] {{8, 4096, 128256}, {67, 393, 35, 1, 0, 0, 142, 2}}, // gpt-oss mxfp4-fp16 decode // [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1] {{8, 2880, 201088}, {67, 393, 35, 1, 0, 0, 142, 2}}, // [-algo14 -m_tile0 -m_stages35 -m_numsK10 -m_reduction2 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{8, 2880, 32}, {14, 0, 0, 10, 2, 0, 0, 0}}, // [-algo21 -m_tile11 -m_stages13 -m_numsK9 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] //-k2880 {{2048, 2880, 32}, {21, 11, 13, 9, 1, 0, 0, 0}}, // [-algo21 -m_tile11 -m_stages19 -m_numsK11 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] //-m_workmem1024 -k2880 {{4096, 2880, 32}, {21, 11, 19, 11, 1, 0, 0, 0}}, // [-algo23 -m_tile11 -m_stages8 -m_numsK2 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] //-m_workmem1024 -k2880 {{8, 2880, 5120}, {23, 11, 8, 2, 1, 0, 0, 0}}, // [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{2048, 2880, 5120}, {21, 20, 15, 1, 0, 0, 0, 0}}, // [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{4096, 2880, 5120}, {21, 20, 15, 1, 0, 0, 0, 0}}, // [-algo23 -m_tile11 -m_stages14 -m_numsK24 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{8, 4096, 2880}, {23, 11, 14, 24, 1, 0, 0, 0}}, // [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{2048, 4096, 2880}, {21, 20, 15, 1, 0, 0, 0, 0}}, // [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1] {{4096, 4096, 2880}, {21, 20, 15, 1, 0, 0, 0, 0}}, }; // bf16*bf16->fp32->bf16 inline const AlgoListType bf16_algo_list = { // Deepseek v3/R1 router gemm // [-algo66 -m_tile10 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom3 -m_mma0 -m_cga2 -m_scheduling1] {{8, 7168, 256}, {66, 10, 35, 1, 0, 0, 3, 2}}, {{512, 7168, 256}, {66, 48, 35, 1, 0, 0, 0, 2}}, {{1024, 7168, 256}, {66, 13, 35, 1, 0, 0, 1, 3}}, }; // fp8*fp8->fp32->fp16 inline const AlgoListType fp8_algo_list = { // Llama-3.1-70B // [-algo66 -m_tile393 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom5 -m_mma0 -m_cga2 -m_scheduling1] {{8, 8192, 8192}, {66, 393, 36, 1, 0, 0, 5, 2}}, // [-algo66 -m_tile10 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom1 -m_mma0 -m_cga2 -m_scheduling1] {{8, 8192, 57344}, {66, 10, 36, 1, 0, 0, 1, 2}}, // Llama-3.3-70B TP4 (this is the default algo on B200. Here we aim to use the same algo on GB200.) // [-algo66 -m_tile393 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom1 -m_mma0 -m_cga4 -m_scheduling1] {{8, 8192, 14336}, {66, 393, 36, 1, 0, 1, 1, 4}}, }; } // namespace cublas_lut } // namespace torch_ext TRTLLM_NAMESPACE_END