import inspect import weakref from copy import copy from dataclasses import dataclass, field from functools import wraps from typing import Any, Callable, ClassVar, Dict, List, Optional, Set, Tuple, TypeVar import tensorrt as trt from ._utils import trt_gte from .logger import logger from .network import Network class Layer: """Layer is a wrapper for TensorRT's ILayer with several python-friendly helper functions.""" def __init__(self, network: Network, trt_layer: trt.ILayer): self._network = weakref.ref(network) self.trt_layer = trt_layer assert isinstance(self.network, Network) assert isinstance(self.trt_layer, trt.ILayer) @property def network(self): return self._network() def get_inputs(self, *indices: int): """Get the input tensors of the layer. Parameters: idx: the indices of the input tensor, will return all inputs if left empty Returns: List[Tensor] """ from .functional import Tensor indices = indices if indices else range(self.trt_layer.num_inputs) ret = [] for i in indices: assert i < self.trt_layer.num_inputs, ( f"Invalid input index {i} for layer {self.trt_layer.name}" ) tensor = self.trt_layer.get_input(i) tensor = Tensor(trt_tensor=tensor, network=self.network, is_network_input=False) ret.append(tensor) return ret def get_outputs(self, *indices: int): """Get the output tensor of the layer. Parameters: idx: the index of the output tensor Returns: List[Tensor] """ from .functional import Tensor indices = indices if indices else range(self.trt_layer.num_outputs) ret = [] for i in indices: assert i < self.trt_layer.num_outputs, ( f"Invalid output index {i} for layer {self.trt_layer.name}" ) tensor = self.trt_layer.get_output(i) tensor = Tensor(trt_tensor=tensor, network=self.network, is_network_input=False) ret.append(tensor) return ret def is_removed(self): return self.network.is_removed_layer(self) def mark_as_removed(self): """Mark the layer as removed, this will remove the layer from the network.""" # NOTE, since INetwork python API doesn't provide a way to remove a layer, we actually mark # the layer as removed in the network. self.network.mark_removed_layer(self) # remove the FLayerInfo if exists FLayerInfoMemo.instance().remove(self.name) def __eq__(self, other: "Layer") -> bool: if isinstance(other, Layer): return self.trt_layer == other.trt_layer if isinstance(other, trt.tensorrt.ILayer): return self.trt_layer == other return False def __getattr__(self, name: str) -> Any: return getattr(self.trt_layer, name) # Refer to https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Layers.html?highlight=elementwise#layers # for a complete list of TRT layers. TRT_LAYER_TYPE_TO_LAYER = { trt.LayerType.CONVOLUTION: trt.IConvolutionLayer, trt.LayerType.ACTIVATION: trt.IActivationLayer, trt.LayerType.POOLING: trt.IPoolingLayer, trt.LayerType.LRN: trt.ILRNLayer, trt.LayerType.SCALE: trt.IScaleLayer, trt.LayerType.SOFTMAX: trt.ISoftMaxLayer, trt.LayerType.DECONVOLUTION: trt.IDeconvolutionLayer, trt.LayerType.CONCATENATION: trt.IConcatenationLayer, trt.LayerType.ELEMENTWISE: trt.IElementWiseLayer, trt.LayerType.UNARY: trt.IUnaryLayer, trt.LayerType.PADDING: trt.IPaddingLayer, trt.LayerType.SHUFFLE: trt.IShuffleLayer, trt.LayerType.REDUCE: trt.IReduceLayer, trt.LayerType.TOPK: trt.ITopKLayer, trt.LayerType.GATHER: trt.IGatherLayer, trt.LayerType.MATRIX_MULTIPLY: trt.IMatrixMultiplyLayer, trt.LayerType.RAGGED_SOFTMAX: trt.IRaggedSoftMaxLayer, trt.LayerType.CONSTANT: trt.IConstantLayer, trt.LayerType.IDENTITY: trt.IIdentityLayer, trt.LayerType.PLUGIN_V2: trt.IPluginV2Layer, trt.LayerType.PLUGIN_V3: trt.IPluginV3Layer, trt.LayerType.SLICE: trt.ISliceLayer, trt.LayerType.SHAPE: trt.IShapeLayer, trt.LayerType.PARAMETRIC_RELU: trt.IParametricReLULayer, trt.LayerType.RESIZE: trt.IResizeLayer, trt.LayerType.TRIP_LIMIT: trt.ITripLimitLayer, trt.LayerType.RECURRENCE: trt.IRecurrenceLayer, trt.LayerType.ITERATOR: trt.IIteratorLayer, trt.LayerType.LOOP_OUTPUT: trt.ILoopOutputLayer, trt.LayerType.SELECT: trt.ISelectLayer, trt.LayerType.FILL: trt.IFillLayer, trt.LayerType.QUANTIZE: trt.IQuantizeLayer, trt.LayerType.DEQUANTIZE: trt.IDequantizeLayer, trt.LayerType.CONDITION: trt.IConditionLayer, trt.LayerType.CONDITIONAL_INPUT: trt.IIfConditionalInputLayer, trt.LayerType.CONDITIONAL_OUTPUT: trt.IIfConditionalOutputLayer, trt.LayerType.ASSERTION: trt.IAssertionLayer, trt.LayerType.SCATTER: trt.IScatterLayer, trt.LayerType.EINSUM: trt.IEinsumLayer, trt.LayerType.GRID_SAMPLE: trt.IGridSampleLayer, trt.LayerType.ONE_HOT: trt.IOneHotLayer, trt.LayerType.NON_ZERO: trt.INonZeroLayer, trt.LayerType.NMS: trt.INMSLayer, trt.LayerType.REVERSE_SEQUENCE: trt.IReverseSequenceLayer, trt.LayerType.NORMALIZATION: trt.INormalizationLayer, trt.LayerType.CAST: trt.ICastLayer, } if trt_gte(10, 8): TRT_LAYER_TYPE_TO_LAYER[trt.LayerType.DYNAMIC_QUANTIZE] = trt.IQuantizeLayer def as_layer(self) -> Any: """Convert to a actual TensorRT layer object. This can be IPluginV2Layer or IConvolutionLayer, so that we can access the actual layer information. """ if self.type in self.TRT_LAYER_TYPE_TO_LAYER: # bypass TRT's bug of retrieving a specific ILayer type in TensorRT self.trt_layer.__class__ = self.TRT_LAYER_TYPE_TO_LAYER[self.type] return self.trt_layer raise NotImplementedError(f"Unknown layer type: {self.type}") def __hash__(self): return id(self.trt_layer) @dataclass class _Pattern: name: str # args helps to pass in/out some information args: Dict[str, Any] = field(default_factory=dict, init=False) def log_info(self, msg: str): logger.info(f"Pattern {self.name}: {msg}") def log_error(self, msg: str): logger.error(f"Pattern {self.name}: {msg}") def log_warn(self, msg: str): logger.warning(f"Pattern {self.name}: {msg}") class PatternRewriter(_Pattern): """A pattern rewriter is a class that can match a pattern in the graph and rewrite the matched pattern. There are two ways to implement a pattern rewriter, either override match() and rewrite() separately, or override match_and_rewrite(). """ def __init__( self, name: str, root_layer: Optional[Set[trt.LayerType]] = None, separate_match_rewrite=False, ): """Constructor. Parameters: name: the name of the rewrite pattern root_layer: the root layer types to start the pattern matching, if not provided, the pattern will traverse all the layers in the graph. separate_match_rewrite: if set to True, the pattern should override match() and rewrite() separately, otherwise, the pattern should override match_and_rewrite() """ super().__init__(name) self.root_layer = root_layer self._separate_match_rewrite = separate_match_rewrite def match(self, layer: Layer) -> bool: raise NotImplementedError() def rewrite(self, layer: Layer) -> None: raise NotImplementedError() def match_and_rewrite(self, layer: Layer) -> bool: raise NotImplementedError() class PatternAnalyzer(_Pattern): def __init__(self, name: str, root_layer: Optional[Set[trt.LayerType]]) -> None: super().__init__(name) self.root_layer = root_layer def match(self, layer: Layer) -> bool: raise NotImplementedError() def analyze(self, subgraph: List[Layer]) -> None: raise NotImplementedError() class _PatternManager: PatternType = TypeVar("PatternType") def __init__(self): # records of (benefit, pattern, id) self.patterns: Dict[str, Tuple[int, _PatternManager.PatternType]] = {} def add(self, label: str, pattern: "_PatternManager.PatternType", benefit: int = 0): assert label not in self.patterns, f"Pattern {label} already exists" self.patterns[label] = (benefit, pattern) def get(self, label: str) -> "_PatternManager.PatternType": return self.patterns[label][1] class RewritePatternManager(_PatternManager): def rewrite(self, net: Network, args=None): modified = True # TODO: we can optimize this by asking TRT to expose a graph iterator consistent even after # the graph is modified. while modified: modified = False # Since the graph iterator is hold by the underlying INetwork, we can only rebuild the # graph cache and match the nodes again. for layer in net.get_layers(): if layer.is_removed(): continue for profit, pattern in sorted(self.patterns.values(), key=lambda x: x[0]): pattern.args = args if pattern.root_layer is not None and layer.type not in pattern.root_layer: continue if pattern._separate_match_rewrite: if pattern.match(layer): pattern.rewrite(layer) modified = True else: if pattern.match_and_rewrite(layer): modified = True @staticmethod def instance(): return _global_rewrite_pattern_manager class AnalysisPatternManager(_PatternManager): def analyze(self, graph: Network, args=None): for layer in graph.get_layers(): if layer.name in graph.removed_layers: continue for benefit, pattern in sorted(self.patterns.values(), key=lambda x: x[0]): pattern.args = args if pattern.root_layer is not None and layer.type not in pattern.root_layer: continue if pattern.match(layer): subgraph = pattern.match(layer) pattern.analyze(subgraph) @staticmethod def instance(): return _global_analysis_pattern_manager @dataclass class FLayerInfo: """The FLayerInfo is used to track the functional layers in the INetwork and help graph rewriting. The lifetime of a FLayer is the same as the corresponding plugin instance in the INetwork. Once the plugin instance is removed by the graph rewriting, the FLayer will be removed as well. WHY this is needed? In the current implementation, for functional methods, once it is called in Python, it will lower to a plugin instance in the INetwork. However, the plugin interface is black box with customized logic, we cannot retrieve necessary information from it. This is quite different from ILayer, which provides a set of APIs to retrieve the information. Therefore, we need to record the high level information in the FLayerInfo, and keep it consistent during the graph rewriting. """ layer_kind: str # the method name in the functional.py # Record the raw inputs of the functional layer to be used in the graph rewrite # NOTE: the raw inputs contains both the constants and Tensors, the Tensors will be also updated by # graph rewriting APIs such as `replace_all_uses_with` raw_inputs: Dict[str, Any] raw_outputs: List[Any] = field(default_factory=list, init=False) # the corresponding ILayer name layer_name: str = field(init=False, default="") # the signature of the functional layer signature: Any = field(init=False, default=None) def __post_init__(self): from .functional import Tensor assert self.layer_kind def replace_with_symbols(arg) -> Any: if arg is None: return None if isinstance(arg, Tensor): return Tensor if isinstance(arg, (list, tuple)): return [replace_with_symbols(x) for x in arg] if isinstance(arg, dict): return {k: replace_with_symbols(v) for k, v in arg.items()} return arg def amend_tensor(arg) -> Any: if arg is None: return None if isinstance(arg, Tensor): arg.network = self.network if isinstance(arg, (list, tuple)): [replace_with_symbols(x) for x in arg] if isinstance(arg, dict): {k: replace_with_symbols(v) for k, v in arg.items()} return arg self.signature = ( self.layer_kind, {name: replace_with_symbols(value) for name, value in self.raw_inputs.items()}, ) amend_tensor(self.raw_inputs) def set_outputs(self, outputs: List[Any]): self.raw_outputs = outputs def get_input(self, name: str) -> Any: return self.raw_inputs[name] def clone_inputs(self): """Get a shallow copy of the inputs.""" return copy(self.raw_inputs) def replace_input_with(self, src, dst): """Replace the input `src` with the input `dst` in the raw_inputs. src: Tensor dst: Tensor """ from .functional import Tensor def replace(arg: Any): if isinstance(arg, Tensor): if arg.trt_tensor is src.trt_tensor: return dst return arg elif isinstance(arg, (list, tuple)): return [replace(x) for x in arg] elif isinstance(arg, dict): return {k: replace(v) for k, v in arg.items()} return arg replace(self.raw_inputs) def replace_outputs_uses_with(self, net: Network, new_outs: List[Any]): """Replace the output users with the new outputs. new_outs: List[Tensor], the new outputs to replace with """ from .functional import Tensor assert len(self.raw_outputs) == len(new_outs) for old_out, new_out in zip(self.raw_outputs, new_outs): assert type(old_out) is type(new_out), ( f"rewrite error, the output type {type(old_out)} is different from the new output " f"type {type(new_out)} not match the original output type {type(old_out)}" ) def _swap_tensor_info(new, deprecated): name = deprecated.trt_tensor.name deprecated.trt_tensor.name = name + "_deprecated" from .functional import cast new = cast(new, deprecated.dtype) new.trt_tensor.name = name def _reset_network_output_tensors(network, out, new_out): net_outputs = list() num_outputs = network._trt_network.num_outputs need_to_mark = False for i in range(num_outputs): net_outputs.append(network._trt_network.get_output(i)) if out.trt_tensor is net_outputs[i]: need_to_mark = True if need_to_mark is False: return for output in net_outputs: network.trt_network.unmark_output(output) for i in range(num_outputs): if net_outputs[i] is out.trt_tensor: network.trt_network.mark_output(new_out.trt_tensor) new_out.trt_tensor.dtype = out.trt_tensor.dtype else: network.trt_network.mark_output(net_outputs[i]) def replace_all_uses_with(out, new_out): if isinstance(out, Tensor): assert isinstance(new_out, Tensor) out.replace_all_uses_with(new_out) _swap_tensor_info(new_out, out) _reset_network_output_tensors(net, out, new_out) elif isinstance(out, list): assert isinstance(new_out, list) for x, y in zip(out, new_out): replace_all_uses_with(x, y) elif isinstance(out, dict): assert isinstance(new_out, dict) for k, v in out.items(): replace_all_uses_with(v, new_out[k]) elif isinstance(out, tuple): assert isinstance(new_out, tuple) for x, y in zip(out, new_out): replace_all_uses_with(x, y) replace_all_uses_with(self.raw_outputs, new_outs) def __hash__(self) -> int: return hash(self.signature) def __repr__(self) -> str: return "".format(self.signature) @staticmethod def _get_spec(arg): """Get the spec that could impact on the Module's topology in the `forward` method.""" from .functional import Tensor # For scalars, we track their value since they are constant if arg is None: return None elif isinstance(arg, (bool, int, str)): return arg # For tensors, currently we only track their type, since they are variables elif isinstance(arg, Tensor): return Tensor elif isinstance(arg, (list, tuple)): return [FLayerInfo._get_spec(x) for x in arg] # NOTE Free to add more types here is broken, carefully note that, from the engine building angle, # all the constants should be captured while for the network variables, their types as placeholders # are enough. else: raise TypeError(f"unsupported input type detected: {type(arg)}") @dataclass class FLayerInfoMemo: """FLayerInfoMemo holds the FLayer of all the necessary functional layers.""" data: Dict[str, FLayerInfo] = field(default_factory=dict, init=False) cur_flayer: ClassVar[Optional[FLayerInfo]] = None def add(self, layer_name: str, layer: FLayerInfo) -> None: assert layer_name not in self.data, f"FLayer {layer_name} already exists in FLayerMemo" self.data[layer_name] = layer def create(self, fn: Callable, *args, **kwargs) -> FLayerInfo: """Add a FLayer to the memo.""" return FLayerInfo(fn.__name__, self.get_function_arg_dict(fn, *args, **kwargs)) def get(self, layer_name: str) -> Optional[FLayerInfo]: return self.data.get(layer_name, None) def remove(self, layer_name: str) -> None: if layer_name in self.data: del self.data[layer_name] @staticmethod def instance() -> "FLayerInfoMemo": """A singleton instance of FLayerMemo.""" from ._common import default_net return default_net().flayer_memo @staticmethod def get_function_arg_dict(f: Callable, *args, **kwargs): """Get the input argument dict of a function.""" sig = inspect.signature(f) bound_args = sig.bind(*args, **kwargs) bound_args.apply_defaults() return {k: v for k, v in bound_args.arguments.items() if k != "self"} class FLayerScope: """FLayerScope is used to capture the plugin within a functional method.""" def __init__(self, fn, *args, **kwargs): self.layer = FLayerInfoMemo.instance().create(fn, *args, **kwargs) def __enter__(self): assert FLayerInfoMemo.cur_flayer is None, "FLayerMemo is not reentrant" # There is no FLayer hierarchy, since the functional layers are not nested FLayerInfoMemo.cur_flayer = self.layer def __exit__(self, exc_type, exc_val, exc_tb): FLayerInfoMemo.cur_flayer = None if exc_type is None: assert self.layer.layer_name != "", ( f"FLayer {self.layer.layer_kind} without a plugin name detected" ) FLayerInfoMemo.instance().add(self.layer.layer_name, self.layer) def record_signature(f): """Helps to decorate a functional method and record its metadata with a FLayerInfo.""" @wraps(f) def wrapper(*args, **kwargs): with FLayerScope(f, *args, **kwargs): outs = f(*args, **kwargs) FLayerInfoMemo.cur_flayer.set_outputs(outs) return outs return wrapper # singletons _global_rewrite_pattern_manager = RewritePatternManager() _global_analysis_pattern_manager = AnalysisPatternManager() class FuseAttentionWithBiasPass(PatternRewriter): def __init__(self): super().__init__(name="fuse_attention_with_bias", separate_match_rewrite=False) @staticmethod def is_attention_plugin(layer: Layer) -> bool: if layer.as_layer().type != trt.LayerType.PLUGIN_V2: return False p = layer.as_layer().plugin conds = [ p.plugin_namespace == "tensorrt_llm", p.plugin_type == "GPTAttention", p.num_outputs == 2, ] return all(conds) @staticmethod def is_elementwise_sum(layer: Layer) -> bool: l = layer.as_layer() # noqa: E741 if l.type != trt.LayerType.ELEMENTWISE: return False return l.op == trt.ElementWiseOperation.SUM @staticmethod def get_eltwise_inputs(layer: Layer): const_inputs = [] mutable_inputs = [] from .functional import Tensor def const_foldable(tensor: Tensor, depth=0) -> bool: max_depth = 10 layer = tensor.get_parent() if layer is None or depth > max_depth: return False if layer.type == trt.LayerType.CONSTANT and len(layer.get_inputs()) == 0: return True for _ in layer.get_inputs(): if not const_foldable(_, depth + 1): return False return True for input in layer.get_inputs(): if const_foldable(input): const_inputs.append(input) else: mutable_inputs.append(input) return const_inputs, mutable_inputs def match_and_rewrite(self, layer: Layer) -> bool: from tensorrt_llm.network import net_guard with net_guard(layer.network): if not self.is_attention_plugin(layer): return False plugin_flayer = FLayerInfoMemo.instance().get(layer.name) input = plugin_flayer.raw_inputs["qkv"] if input is None or isinstance(input, list) or len(list(input.get_users())) != 1: return False parent_layer = input.get_parent() if not self.is_elementwise_sum(parent_layer): return False eltwise_const_inputs, eltwise_mutable_inputs = self.get_eltwise_inputs(parent_layer) if len(eltwise_const_inputs) != 1 or len(eltwise_mutable_inputs) != 1: return False if plugin_flayer.raw_inputs["qkv_bias"] is not None: return False plugin_flayer.raw_inputs["qkv"] = eltwise_mutable_inputs[0] plugin_flayer.raw_inputs["qkv_bias"] = eltwise_const_inputs[0] from .functional import gpt_attention new_outputs = gpt_attention(**plugin_flayer.raw_inputs) plugin_flayer.replace_outputs_uses_with(layer.network, new_outputs) return True def optimize(net): patterns = RewritePatternManager() patterns.add( label="fuse_attention_with_bias", pattern=FuseAttentionWithBiasPass(), ) patterns.rewrite(net)