# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_arange_int(self): # test data start = 0 end = 128 dtype = 'int32' # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() output = tensorrt_llm.functional.arange(start=start, end=end, dtype=dtype).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={}) ref = torch.arange(start, end).int() np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) def test_arange_tensor(self): # test data s = 0 e = 128 dtype = 'int32' # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() start = tensorrt_llm.functional.constant(np.array(s, dtype=np.int32)) end_tensor = tensorrt_llm.functional.constant( np.array([0] * e, dtype=np.int32)) output = tensorrt_llm.functional.arange( start=start, end=tensorrt_llm.functional.shape(end_tensor, 0), dtype=dtype).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={}) ref = torch.arange(s, e).int() np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)