# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor from tensorrt_llm.functional import shape class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', )]) def test_assertion(self, dtype): # test data x_shape = (2, 4, 8) y_shape = (4, 4, 4) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) y_data = torch.rand(y_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=y_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) tensorrt_llm.functional.assertion(shape(x, 1) == shape(y, 1)) output = tensorrt_llm.functional.identity(x).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: runner.infer(feed_dict={'x': x_data.numpy(), 'y': y_data.numpy()})