# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile, TrtRunner) import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', )]) def test_einsum(self, dtype): # torch 1.13: "baddbmm_with_gemm" not implemented for 'Half' # test data x_shape = (12, 12, 96, 96) y_shape = (12, 12, 96, 64) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) y_data = torch.rand(y_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) equation = 'bnth,bnhs->bnts' # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=y_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.einsum(equation, [x, y]).trt_tensor output.name = 'output' network.mark_output(output) # trt run profiles = [ Profile().add('x', x_shape, x_shape, x_shape).add('y', y_shape, y_shape, y_shape) ] build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network), config=CreateConfig(profiles=profiles)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'x': x_data.numpy(), 'y': y_data.numpy() }) # pytorch run ref = torch.functional.einsum(equation, [x_data, y_data]) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-4)