# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor def split_vocab_size(vocab_size, tp_size): return int(math.ceil(vocab_size / tp_size)) def split(v, tp_size, idx, dim=0): if tp_size == 1: return v if len(v.shape) == 1: return np.ascontiguousarray(np.split(v, tp_size)[idx]) elif len(v.shape) == 2: return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx]) return None class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([( 'float32', 1, ), ( 'float32', 0, ), ( 'float16', 1, ), ( 'float16', 0, )]) def test_embedding(self, dtype, use_lookup_plugin): # torch gelu does not support float16 fp16 = (dtype == 'float16') # meta data batch_size = 10 vocab_size = 1000 n_embed = 1024 np.random.seed(0) # test data ## input index index_shape = (batch_size) index_np = np.random.randint(low=0, high=vocab_size, size=index_shape, dtype=np.int32) index_data = torch.from_numpy(index_np) ## weight data weight_np = np.random.rand(vocab_size, n_embed).astype(dtype) weight_data = torch.from_numpy(weight_np) # construct trt network builder = tensorrt_llm.Builder() # builder_config = builder.create_builder_config( # name='embedding', # precision='float16' if fp16 else 'float32', # timing_cache=timing_cache) net = builder.create_network() if use_lookup_plugin: net.plugin_config.set_lookup_plugin(dtype) with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() index = Tensor(name='index', shape=index_data.shape, dtype=tensorrt_llm.str_dtype_to_trt('int32')) weight = Tensor(name='weight', shape=weight_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.embedding(input=index, weight=weight) output = output.trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'))) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'index': index_np, 'weight': weight_np }) # pytorch run embedding = torch.nn.Embedding.from_pretrained(weight_data) ref = embedding(index_data) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-3)