# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import tensorrt as trt import torch from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile, TrtRunner) import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_expand_1(self): # test data dtype = 'float32' input_shape = (1, 10) output_shape = (2, 10) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) shape_data = torch.tensor(output_shape).int() # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) shape = Tensor(name='shape', shape=(len(input_shape), ), dtype=trt.int32) output = tensorrt_llm.functional.expand(input, shape).trt_tensor output.name = 'output' network.mark_output(output) # trt run profiles = [Profile().add('shape', (1, 1), input_shape, (10, 10))] build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network), config=CreateConfig(profiles=profiles)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), 'shape': shape_data.numpy() }) # pytorch run ref = input_data.expand(output_shape) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_expand_2(self): # test data dtype = 'float32' input_shape = (2, 1, 1, 10) output_shape = (2, 1, 12, 10) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) shape_data = torch.tensor(output_shape).int() # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) shape = Tensor(name='shape', shape=(len(input_shape), ), dtype=trt.int32) output = tensorrt_llm.functional.expand(input, shape).trt_tensor output.name = 'output' network.mark_output(output) # trt run profiles = [ Profile().add('shape', (1, 1, 1, 1), input_shape, (10, 10, 10, 10)) ] build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network), config=CreateConfig(profiles=profiles)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), 'shape': shape_data.numpy() }) # pytorch run ref = input_data.expand(output_shape) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_expand_3(self): # test data dtype = 'float32' hidden_dim = 10 input_shape = (1, hidden_dim) batch_size = 8 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) input_length = tensorrt_llm.functional.constant( np.array([0] * batch_size, dtype=np.int32)) expand_shape = tensorrt_llm.functional.concat( [tensorrt_llm.functional.shape(input_length, 0), hidden_dim]) output = tensorrt_llm.functional.expand(input, expand_shape).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'input': input_data.numpy()}) ref = input_data.expand([batch_size, hidden_dim]) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)